It Takes a Math Department

Stephen DeBacker

AMS Committee on Education
A story . . .

Caveats

Placement

Intro Program Courses

Training

Conclusion
A story
A story
A story
Some advice from John Wooden

“Never mistake activity for achievement.”

Stephen DeBacker (U of M A2)
“Never mistake activity for achievement.”
Some advice from John Wooden

“Never mistake activity for achievement.”
Some advice from John Wooden

“Never mistake activity for achievement.”
Caveat One

There will be typos.
Caveat One

There will be typos.
Caveat Two
I am going to discuss a small part of a huge program.
I am going to discuss a small part of a huge program.
Caveat Two, continued

(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .

In any given year, 25% of faculty are involved in advising.

In any given year, 25% of faculty are guiding an REU.

Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .)

Some design the contests that they take. Others coach.

Some run/advise the various student clubs/colloquium Douglass Houghton Scholars. etc. . . .
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
- Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .)
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
- Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .
- Some design the contests that they take.
Caveat Two, continued

(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
- Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .
- Some design the contests that they take. Others coach.
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
- Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .
- Some design the contests that they take. Others coach.
- Some run/advise the various student clubs/colloquium
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
- Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .
- Some design the contests that they take. Others coach.
- Some run/advise the various student clubs/colloquium
- Douglass Houghton Scholars.
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
- Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .
- Some design the contests that they take. Others coach.
- Some run/advise the various student clubs/colloquium
- Douglass Houghton Scholars.
- etc. . . .
(Nearly) everyone contributes to the success of the undergraduate program; here are some of the many things I won’t discuss:

- Michigan has a healthy actuarial program, an Inquiry Based Learning center, a solid secondary teaching program . . .
- In any given year, 25% of faculty are involved in advising.
- In any given year, 25% of faculty are guiding an REU.
- Some faculty create outreach opportunities for students (Math Circle, MMSS, Algebra Project, Future University, . . .)
- Some design the contests that they take. Others coach.
- Some run/advise the various student clubs/colloquium
- Douglass Houghton Scholars.
- etc. . . .
Caveat Two, continued

The point is: it takes a department. Everyone needs to buy in, participate, make it go.

Stephen DeBacker (U of M A²)
The point is: it takes a department. Everyone needs to buy in, participate, make it go.
The point is: it takes a department. Everyone needs to buy in, participate, make it go.
There are five, two-year long introductory sequences at Michigan:

1. Standard Sequence
2. Honors Seminar Sequence
3. Honors Applied Math Sequence
4. Honors Calculus Sequence
5. Honors Math Sequence
There are five, two-year long introductory sequences at Michigan:
There are five, two-year long introductory sequences at Michigan:

1. Standard Sequence
There are five, two-year long introductory sequences at Michigan:
1. Standard Sequence
2. Honors Seminar Sequence
There are five, two-year long introductory sequences at Michigan:

1. Standard Sequence
2. Honors Seminar Sequence
3. Honors Applied Math Sequence
There are five, two-year long introductory sequences at Michigan:

1. Standard Sequence
2. Honors Seminar Sequence
3. Honors Applied Math Sequence
4. Honors Calculus Sequence
There are five, two-year long introductory sequences at Michigan:

1. Standard Sequence
2. Honors Seminar Sequence
3. Honors Applied Math Sequence
4. Honors Calculus Sequence
5. Honors Math Sequence
There are five, two-year long introductory sequences at Michigan:

1. Standard Sequence
2. Honors Seminar Sequence
3. Honors Applied Math Sequence
4. Honors Calculus Sequence
5. Honors Math Sequence
Placement

Standard Sequence

Math 105: Data, Functions, and Graphs.

First year courses:
- Math 115: Calculus I
- Math 116: Calculus II

Second year courses:
- Math 214: Linear algebra for CS and IOE
- Math 215: Multivariable
- Math 216: Differential Equations for non-math majors
- Math 217: Linear algebra/gateway to mathematical writing

Stephen DeBacker (U of M A2)
Standard Sequence

- Math 105: Data, Functions, and Graphs.
Standard Sequence

- Math 105: Data, Functions, and Graphs.
Standard Sequence

- Math 105: Data, Functions, and Graphs.
- First year courses:

- Math 115: Calculus I
- Math 116: Calculus II

Second year courses

- Math 214: Linear algebra for CS and IOE
- Math 215: Multivariable
- Math 216: Differential Equations for non-math majors
- Math 217: Linear algebra/gateway to mathematical writing
Standard Sequence

- Math 105: Data, Functions, and Graphs.

First year courses:
- Math 115: Calculus I
Standard Sequence

- Math 105: Data, Functions, and Graphs.

- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II
Standard Sequence

- Math 105: Data, Functions, and Graphs.

- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II

Second year courses:
- Math 214: Linear algebra for CS and IOE
- Math 215: Multivariable
- Math 216: Differential Equations for non-math majors
- Math 217: Linear algebra/gateway to mathematical writing

Stephen DeBacker (U of M A²)
October 17, 2014
Standard Sequence

- Math 105: Data, Functions, and Graphs.

- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II
Standard Sequence

- Math 105: Data, Functions, and Graphs.
- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II
- Second year courses
Standard Sequence

- Math 105: Data, Functions, and Graphs.

- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II

- Second year courses
 - Math 214: Linear algebra for CS and IOE
Standard Sequence

- Math 105: Data, Functions, and Graphs.

- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II

- Second year courses
 - Math 214: Linear algebra for CS and IOE
 - Math 215: Multivariable
Standard Sequence

- Math 105: Data, Functions, and Graphs.

First year courses:
- Math 115: Calculus I
- Math 116: Calculus II

Second year courses:
- Math 214: Linear algebra for CS and IOE
- Math 215: Multivariable
- Math 216: Differential Equations for non-math majors
Standard Sequence

- Math 105: Data, Functions, and Graphs.

- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II

- Second year courses
 - Math 214: Linear algebra for CS and IOE
 - Math 215: Multivariable
 - Math 216: Differential Equations for non-math majors
 - Math 217: Linear algebra/gateway to mathematical writing
Standard Sequence

- Math 105: Data, Functions, and Graphs.

- First year courses:
 - Math 115: Calculus I
 - Math 116: Calculus II

- Second year courses
 - Math 214: Linear algebra for CS and IOE
 - Math 215: Multivariable
 - Math 216: Differential Equations for non-math majors
 - Math 217: Linear algebra/gateway to mathematical writing
Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)
2. Each incoming student comes to campus for three days of orientation

For placement in standard calculus sequence, see GSI.
If extremely interested in math, see a faculty member for placement.

Surprisingly, this works really, really well.
Placement Process

Proper math placement is very important.
Placement Process

Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:
Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam.
Placement Process

Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)

For placement in standard calculus sequence, see GSI.

If extremely interested in math, see a faculty member for placement.
Proper math placement is very important.
Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)
2. Each incoming student comes to campus for three days of orientation
Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)
2. Each incoming student comes to campus for three days of orientation
 - For placement in standard calculus sequence, see GSI.
Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)
2. Each incoming student comes to campus for three days of orientation
 1. For placement in standard calculus sequence, see GSI.
 2. If extremely interested in math, see a faculty member for placement.
Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)
2. Each incoming student comes to campus for three days of orientation
 1. For placement in standard calculus sequence, see GSI.
 2. If extremely interested in math, see a faculty member for placement.
Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)
2. Each incoming student comes to campus for three days of orientation
 1. For placement in standard calculus sequence, see GSI.
 2. If extremely interested in math, see a faculty member for placement.

Surprisingly, this works really, really well.
Placement Process

Proper math placement is very important. Placement at Michigan involves two (or three, depending on how you count) steps:

1. On-line placement exam. (ready/not ready for calculus)
2. Each incoming student comes to campus for three days of orientation
 - For placement in standard calculus sequence, see GSI.
 - If extremely interested in math, see a faculty member for placement.

Surprisingly, this works really, really well.
History – at least of 105, 115, 116
History – at least of 105, 115, 116

- pre 1990
History – at least of 105, 115, 116

- pre 1990
- Calculus Reform
History – at least of 105, 115, 116

- pre 1990
- Calculus Reform
 - Mort Brown, Pat Schur, …
History – at least of 105, 115, 116

- pre 1990
- Calculus Reform
 - Mort Brown, Pat Schur, . . .
 - "New wave" calculus
History – at least of 105, 115, 116

- pre 1990
- Calculus Reform
 - Mort Brown, Pat Schur, ...
 - "New wave" calculus
 - adopted Hughes-Hallett for 105 through 116
History – at least of 105, 115, 116

- pre 1990
- Calculus Reform
 - Mort Brown, Pat Schur, . . .
 - "New wave" calculus
 - adopted Hughes-Hallett for 105 through 116
- For last 10 years or so:
History – at least of 105, 115, 116

- pre 1990
- Calculus Reform
 - Mort Brown, Pat Schur, …
 - "New wave" calculus
 - adopted Hughes-Hallett for 105 through 116
- For last 10 years or so:
 - managed by Karen Rhea, Gavin LaRose, Paul Kessenich, Fernando Carreon, Angela Kubena
History – at least of 105, 115, 116

- pre 1990
- Calculus Reform
 - Mort Brown, Pat Schur, …
 - "New wave" calculus
 - adopted Hughes-Hallett for 105 through 116
- For last 10 years or so:
 - managed by Karen Rhea, Gavin LaRose, Paul Kessenich, Fernando Carreon, Angela Kubena
What do the Introductory Courses look like?

105 and first year courses (Calc I and II):
- Oriented towards concepts/modeling
- Very little lecturing, focus on solving problems
- Professionally coordinated
- Math Lab resource
- Uniform exams and grading "force" instructor into role of coach.
- Many, many moving parts. For example,
 - WebWork
 - Team Homework
 - Instructor graded.
 - Gateway Exams
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
 - Professionally coordinated
 - Math Lab resource
 - Uniform exams and grading "force" instructor into role of coach.
 - Many, many moving parts. For example, WebWork, Team Homework, Instructor graded, Gateway Exams.
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
 - Professionally coordinated
What do the Introductory Courses look like?

105 and first year courses (Calc I and II):
- Oriented towards concepts/modeling
- Very little lecturing, focus on solving problems
- Professionally coordinated
- Math Lab resource
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
 - Professionally coordinated
 - Math Lab resource
 - Uniform exams and grading "force" instructor into role of coach.
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
 - Professionally coordinated
 - Math Lab resource
 - Uniform exams and grading "force" instructor into role of coach.
 - Many, many moving parts. For example,
What do the Introductory Courses look like?

105 and first year courses (Calc I and II):
- Oriented towards concepts/modeling
- Very little lecturing, focus on solving problems
- Professionally coordinated
- Math Lab resource
- Uniform exams and grading "force" instructor into role of coach.
- Many, many moving parts. For example,
 - WebWork
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
 - Professionally coordinated
 - Math Lab resource
 - Uniform exams and grading "force" instructor into role of coach.
 - Many, many moving parts. For example,
 - WebWork
 - Team Homework
What do the Introductory Courses look like?

105 and first year courses (Calc I and II):
- Oriented towards concepts/modeling
- Very little lecturing, focus on solving problems
- Professionally coordinated
- Math Lab resource
- Uniform exams and grading "force" instructor into role of coach.
- Many, many moving parts. For example,
 - WebWork
 - Team Homework Instructor graded.
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
 - Professionally coordinated
 - Math Lab resource
 - Uniform exams and grading "force" instructor into role of coach.
 - Many, many moving parts. For example,
 - WebWork
 - Team Homework Instructor graded.
 - Gateway Exams
105 and first year courses (Calc I and II):
- Oriented towards concepts/modeling
- Very little lecturing, focus on solving problems
- Professionally coordinated
- Math Lab resource
- Uniform exams and grading "force" instructor into role of coach.
- Many, many moving parts. For example,
 - WebWork
 - Team Homework Instructor graded.
 - Gateway Exams
What do the Introductory Courses look like?

- 105 and first year courses (Calc I and II):
 - Oriented towards concepts/modeling
 - Very little lecturing, focus on solving problems
 - Professionally coordinated
 - Math Lab resource
 - Uniform exams and grading "force" instructor into role of coach.
 - Many, many moving parts. For example,
 - WebWork
 - Team Homework Instructor graded.
 - Gateway Exams
What do the Introductory Courses look like?

Second year courses (214, 215, 216, 217):
- Traditional lecture
- Coordinated by faculty
- Math Lab resource
- (Mostly) uniform exams
- Many, many moving parts. For example, WebWork
- Written Homework
- Group work in labs

In addition, for Math 217:
- Peer instruction for proof writing (Kiluk experiment)
- Experimenting with using IBL techniques
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
 - Math Lab resource
 - (Mostly) uniform exams
 - Many, many moving parts. For example,
 - WebWork
 - Written Homework
 - Group work in labs
 - In addition, for Math 217:
 - Peer instruction for proof writing (Kiluk experiment)
 - Experimenting with using IBL techniques
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
 - Math Lab resource
What do the Introductory Courses look like?

Second year courses (214, 215, 216, 217):
- Traditional lecture
- Coordinated by faculty
- Math Lab resource
- (Mostly) uniform exams
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
 - Math Lab resource
 - (Mostly) uniform exams
 - Many, many moving parts. For example,
What do the Introductory Courses look like?

Second year courses (214, 215, 216, 217):
- Traditional lecture
- Coordinated by faculty
- Math Lab resource
- (Mostly) uniform exams
- Many, many moving parts. For example,
 - WebWork
Second year courses (214, 215, 216, 217):
- Traditional lecture
- Coordinated by faculty
- Math Lab resource
- (Mostly) uniform exams
- Many, many moving parts. For example,
 - WebWork
 - Written Homework
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
 - Math Lab resource
 - (Mostly) uniform exams
 - Many, many moving parts. For example,
 - WebWork
 - Written Homework
 - Group work in labs
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
 - Math Lab resource
 - (Mostly) uniform exams
 - Many, many moving parts. For example,
 - WebWork
 - Written Homework
 - Group work in labs

- In addition, for Math 217:
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
 - Math Lab resource
 - (Mostly) uniform exams
 - Many, many moving parts. For example,
 - WebWork
 - Written Homework
 - Group work in labs

- In addition, for Math 217:
 - Peer instruction for proof writing (Kiluk experiment)
What do the Introductory Courses look like?

- Second year courses (214, 215, 216, 217):
 - Traditional lecture
 - Coordinated by faculty
 - Math Lab resource
 - (Mostly) uniform exams
 - Many, many moving parts. For example,
 - WebWork
 - Written Homework
 - Group work in labs

- In addition, for Math 217:
 - Peer instruction for proof writing (Kiluk experiment)
 - Experimenting with using IBL techniques
What do the Introductory Courses look like?

Second year courses (214, 215, 216, 217):
- Traditional lecture
- Coordinated by faculty
- Math Lab resource
- (Mostly) uniform exams
- Many, many moving parts. For example,
 - WebWork
 - Written Homework
 - Group work in labs

In addition, for Math 217:
- Peer instruction for proof writing (Kiluk experiment)
- Experimenting with using IBL techniques
Assessment

- 90s
Assessment

- 90s
- Calculus Concept Inventory
Assessment

- 90s
- Calculus Concept Inventory
- The Calculus Study
Assessment

- 90s
- Calculus Concept Inventory
- The Calculus Study
- Vilma Mesa
Assessment

- 90s
- Calculus Concept Inventory
- The Calculus Study
- Vilma Mesa
All new graduate student and postdoc instructors participate in training.
Discuss schedule.
The point: we want buy in. Teaching well is important; once instructors accept this, things generally fall into place.
All new graduate student and postdoc instructors participate in training.
All new graduate student and postdoc instructors participate in training.

Discuss schedule.
All new graduate student and postdoc instructors participate in training.

Discuss schedule.

The point: we want buy in. Teaching well is important; once instructors accept this, things generally fall into place.
All new graduate student and postdoc instructors participate in training.

Discuss schedule.

The point: we want buy in. Teaching well is important; once instructors accept this, things generally fall into place.
Ongoing training
Ongoing training

- All new graduate student instructors are (carefully) placed in either 105 or 115
Ongoing training

- All new graduate student instructors are (carefully) placed in either 105 or 115
- Weekly meetings
Ongoing training

- All new graduate student instructors are (carefully) placed in either 105 or 115
- Weekly meetings
- Scripts
Ongoing training

- All new graduate student instructors are (carefully) placed in either 105 or 115
- Weekly meetings
- Scripts
- Classroom visits (at least twice).
Training

Ongoing training

- All new graduate student instructors are (carefully) placed in either 105 or 115
- Weekly meetings
- Scripts
- Classroom visits (at least twice).

Every year one or two faculty go through training.
A successful undergraduate program requires the efforts of nearly everyone in the department.
Conclusion

A successful undergraduate program requires the efforts of nearly everyone in the department.