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Abstract

Interior methods are a pervasive feature of the optimization landscape today, but it
was not always so. Although interior-point techniques, primarily in the form of barrier
methods, were widely used during the 1960s for problems with nonlinear constraints,
their use for the fundamental problem of linear programming was unthinkable because
of the total dominance of the simplex method. During the 1970s, barrier methods were
superseded, nearly to the point of oblivion, by newly emerging and seemingly more effi-
cient alternatives such as augmented Lagrangian and sequential quadratic programming
methods. By the early 1980s, barrier methods were almost universally regarded as a
closed chapter in the history of optimization.

This picture changed dramatically in 1984, when Narendra Karmarkar announced a
fast polynomial-time interior method for linear programming; in 1985, a formal connec-
tion was established between his method and classical barrier methods. Since then, in-
terior methods have continued to transform both the theory and practice of constrained
optimization. We present a condensed, unavoidably incomplete look at classical mate-
rial and recent research about interior methods.

1 Overview

REVOLUTION:
(i) a sudden, radical, or complete change;
(ii) a fundamental change in political organization, especially the overthrow or
renunciation of one government or ruler and the substitution of another.1

It can be asserted with a straight face that the field of continuous optimization has
undergone a revolution since 1984 in the sense of the first definition, and that the second

1Merriam–Webster Collegiate Dictionary, Seventh Edition, 1965.
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definition applies in a philosophical sense: Because the interior-point presence in optimiza-
tion today is ubiquitous, it is easy to lose sight of the magnitude and depth of the shifts that
have occurred during the past twenty years. Building on the implicit political metaphor of
our title, successful revolutions eventually become the status quo.

The interior-point revolution, like many other revolutions, includes old ideas that are
rediscovered or seen in a different light, along with genuinely new ideas. The stimulating
interplay of old and new continues to lead to increased understanding as well as an ever-
larger set of techniques for an ever-larger array of problems, familiar (Section 4.4) and
heretofore unexplored (Section 5).

Because of the vast size of the interior-point literature, it would be impractical to cite
even a moderate fraction of the relevant references, but more complete treatments are
mentioned throughout. The author regrets the impossibility of citing all important work
individually.

2 Linear and Nonlinear Programming: Separated from Birth

Prior to 1984, there was, to first order, no connection between linear and nonlinear pro-
gramming. For historical reasons that seem puzzling in retrospect, these topics, one a strict
subset of the other, evolved along two essentially disjoint paths. Even more remarkably,
this separation was a fully accepted part of the culture of optimization—indeed, it was
viewed by some as inherent and unavoidable. For example, in a widely used and highly
respected textbook [24] published in 1973, the author comments in the preface that “Part
II [unconstrained optimization] . . . is independent of Part I [linear programming]” and that
“except in a few isolated sections, this part [constrained optimization] is also independent
of Part I”. To provide an accurate reflection of this formerly prevailing viewpoint, we give
separate background treatments for linear and nonlinear programming.

2.1 Linear programming

2.1.1 Problem statement and optimality conditions

The linear programming (LP) problem involves minimization of a linear (affine) function
subject to linear constraints, and can be represented in various mathematically equivalent
ways. The two forms of interest here are the all-inequality form,

minimize
x

cTx subject to Ax ≥ b, (1)

and standard form,

minimize
x

cTx subject to Ax = b, x ≥ 0, (2)

where A is m × n. In the standard-form problem (2), the only inequalities are the simple
bound constraints x ≥ 0, leading to the crucial (and sometimes overlooked) property that x
plays two distinct roles—as the variables and the values of the constraints. It is customary
in standard-form problems to assume that A has full rank.
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A point is feasible if it satisfies the problem constraints. The feasible point x∗ is a
solution of the standard-form LP (2) if and only if, for some m-vector y∗ and n-vector z∗,

c = ATy∗ + z∗, z∗ ≥ 0, and z∗i x
∗
i = 0 for i = 1, . . . , n, (3)

where z∗ is the Lagrange multiplier for the bound constraints and y∗ is the Lagrange mul-
tiplier for the equality constraints Ax = b.

2.1.2 The simplex method

A fundamental property of linear programs is that, if the optimal objective value is finite,
a vertex minimizer must exist. (For details about linear programming and its terminology,
see, e.g., [5], [31], and [19].) The simplex method, invented by George B. Dantzig in 1947,
is an iterative procedure for solving LPs that completely depends on this property. The
starting point for the simplex method must be a vertex. Thereafter, every iteration moves
to an adjacent vertex, decreasing the objective as it goes, until an optimal vertex is found.
The underlying motivation for the simplex method is easy to understand, but its simplicity
is sometimes obscured by a focus on algebraic details.

Almost from the beginning, the simplex method (and, by association, linear program-
ming) acquired an array of specialized terminology and notation, such as “basic feasible
solution”, “min ratio test”, and the tableau. During the early years of the simplex method,
simplex steps were carried out by performing unsafeguarded rank-one updates to the ex-
plicit inverse of the square basis matrix. As an aside, use of this risky technique shows that
mainstream linear programming was widely separated not only from nonlinear program-
ming, but also from numerical linear algebra; fortunately, during the 1960s, the simplex
method became more closely connected with state-of-the-art linear algebraic techniques.

Although “non-simplex” strategies for LP were suggested and tried from time to time
between 1950 and the early 1980s, such techniques never approached the simplex method
in overall speed and reliability. Furthermore, the mindset induced by the dominance of the
simplex method held sway to such an extent that even techniques labeled as non-simplex
were at heart based on the same motivation as the simplex method: to identify the active
inequality constraints by staying on a changing subset of exactly-satisfied constraints while
reducing the objective function.

2.1.3 Concerns about complexity

In practice, because the simplex method routinely and efficiently solved very large linear pro-
grams, it retained unquestioned preeminence as the solution method of choice. However, the
simplex method was viewed with nagging discontent by those interested in computational
complexity, a field whose importance increased during the 1960s and 1970s. An underlying
tenet of theoretical computer science is that any “fast” algorithm must be polynomial-time,
meaning that the number of arithmetic operations required to solve the problem should be
bounded above by a polynomial in the problem size.

Although the simplex method almost always converges on real-world problems in a num-
ber of iterations that is a small multiple of the problem dimension, it is known that the
simplex method can visit every vertex of the feasible region—for example, on the famous
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Klee-Minty “twisted cube” LP; see [31] and [17] for two formulations of this problem. Con-
sequently the worst-case complexity of the simplex method is exponential in the problem
dimension, which means that the simplex method must be a “bad” algorithm. The discon-
nect between observed speed and theoretical inefficiency was widely known, and there were
several claims, subsequently shown to be false, that a provably polynomial-time method for
LP had been discovered.

The first polynomial-time LP algorithm was devised in 1979 by Leonid Khachian of the
then Soviet Union, in work that made newspaper headlines around the world. Khachian’s
ellipsoid method is based on specialization of general nonlinear approaches developed ear-
lier by other Soviet mathematicians, notably Shor, Yudin and Nemirovskii. In particular,
Khachian’s method does not rely, as the simplex method does, on existence of a vertex
solution or, more generally, the finiteness/combinatorial features of the LP problem. Poly-
nomiality of the ellipsoid method arises from two bounds: an outer bound that guarantees
existence of an initial (huge) ellipsoid enclosing the solution, and an inner bound that spec-
ifies how small the final ellipsoid must be to ensure sufficient closeness to the exact solution.
See, for example, [31] for details about Khachian’s method.

Despite its favorable complexity, the performance of the ellipsoid method in practice,
i.e., its actual running time, was extremely slow—much slower than the simplex method.
In fact, in complete contrast to the simplex method, the number of iterations of the ellip-
soid method tended to be comparable to its enormous (albeit polynomial) upper bound.
Thus the simplex method remained “the only game in town” for solving linear programs,
leading to a puzzling and deeply unsatisfying anomaly in which an exponential-time algo-
rithm was consistently and substantially faster than a polynomial-time algorithm. Even
after Khachian’s breakthrough, the quest continued for an LP algorithm that was not only
polynomial, but also efficient in practice.2 The linear programming story will continue in
Section 3.

2.2 Nonlinear programming

2.2.1 Problem statement and optimality conditions

The generic nonlinear programming, or nonlinear optimization, problem involves minimiza-
tion of a nonlinear function subject to nonlinear constraints. Special cases of nonlinear
programming arise when, for example, the objective function is quadratic, the constraints
are bounds, or the constraints are linear (equalities or inequalities). Here we consider only
the all-inequality version of a nonlinear programming problem:

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (4)

where c(x) has m component functions, and f and {ci} are smooth. (Observe that (4) is
analogous in form to the all-inequality linear program (1).) The n-vector g(x) denotes the
gradient of f ; the matrix of second partial derivatives will be denoted by H(x). The gradient
and Hessian of ci(x) will be denoted by ai(x) and Hi(x). The m×n Jacobian matrix of c(x)
is denoted by A(x), whose ith row is ai(x)T. The Lagrangian function associated with (4) is

2A side comment: Recent work on “smoothed complexity” provides a fascinating explanation of why the
simplex method is usually a polynomial-time algorithm; see [32].
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L(x, λ) = f(x)−λTc(x), where λ normally represents a vector of Lagrange multipliers. The
Hessian of the Lagrangian with respect to x, denoted by W , is W (x, λ) = H−

∑m
j=1

λjHj(x).
The constraint ci(x) ≥ 0 is said to be active at x̄ if ci(x̄) = 0 and inactive if ci(x̄) > 0.

Let Â(x) denote the Jacobian of the active constraints at x, and let N(x) denote a matrix
whose columns form a basis for the null space of Â.

Throughout the remainder of the paper, we assume the following conditions, which are
sufficient to ensure that x∗ is an isolated constrained minimizer of (4):

1. c(x∗) ≥ 0 and Â(x∗) has full rank;

2. g(x∗) = A(x∗)T λ∗, with λ∗j ≥ 0 and

λ∗jcj(x
∗) = 0, j = 1, . . . ,m; (5)

3. λ∗j > 0 if cj(x
∗) = 0, j = 1, . . . , m;

4. N(x∗)T W (x∗, λ∗)N(x∗), the reduced Hessian of the Lagrangian, is positive definite.

Relation (5), that each pairwise product of constraint and multiplier must be zero, is called
complementarity. Condition 3, strict complementarity, requires that one of cj(x

∗) and λ∗j
must be positive.

2.2.2 Newton’s method

Newton’s method occurs in multiple forms throughout optimization. When solving the
nonlinear equations Φ(z) = 0, let J(z) denote the Jacobian matrix of Φ. If zk is the current
point and J(zk) is nonsingular, the Newton step δk is the solution of the linear system

J(zk)δk = −Φ(zk), (6)

so that δk is the step from zk to a zero of the local affine Taylor-series model of Φ.
For unconstrained minimization of f(x) starting from xk, the Newton step pk is designed

to minimize a local Taylor-series quadratic model of f(xk + p), namely f(xk) + g(xk)T p +
1

2
pT H(xk)p. If the current Hessian H(xk) is positive definite, pk solves the linear system

H(xk)p = −g(xk). (7)

When minimizing f(x) subject to m linear equality constraints Ax = b, the Newton step
pk should minimize the local Taylor-series quadratic model of f subject to also satisfying
the constraints A(xk + pk) = b, so that pk is a solution of the quadratic program

minimize
p∈Rn

1

2
pTHkp + gT

kp subject to Ap = b − Axk, (8)

where Hk = H(xk) and gk = g(xk). Under appropriate conditions, pk and a “new” multi-
plier yk+1 satisfy the following n + m linear equations:(

Hk AT

A 0

)(
pk

−yk+1

)
=

(
−gk

b − Axk

)
, (9)
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where yk+1 is an estimate of the Lagrange multipliers for the equality constraints. The
matrix in (9) is nonsingular if A has full rank and the reduced Hessian NT

A
HkNA

is positive
definite, where NA is a basis for the null space of A. If Axk = b, the second equation in (9)
becomes Apk = 0, implying that pk must lie in the null space of A.

A “pure” Newton method for zero-finding begins with an initial point z0, and generates
a sequence of Newton iterates {zk}, where zk+1 = zk + δk, with δk defined by (6), and
similarly for minimization, using (7) and (9). Under various conditions that can be quite
restrictive, a pure Newton method converges quadratically to a solution.

One way to encourage convergence from a general starting point is to perform a line

search in which the new iterate is defined by zk+1 = zk+αkδk, where the positive scalar αk is
chosen to decrease a merit function that measures progress. In unconstrained optimization,
the merit function is typically the objective function. Standard line search acceptance
criteria that ensure convergence are discussed in, for example, [29, 28]. A second strategy
is based on defining a trust region around the current iterate within which the local model
can be trusted. In optimization, the step in a trust-region method is typically chosen
to minimize (approximately) the local Taylor-series quadratic model subject to remaining
within a (normally �2) trust region.

2.2.3 Barrier methods for constrained optimization

The 1960s were the heyday of unconstrained optimization, and, as a result, it was common
practice to convert constrained problems into unconstrained subproblems or sequences of
unconstrained subproblems. Penalty and barrier methods were especially popular, both
motivated by minimizing a composite function that reflects the original objective function
as well as the influence of the constraints. Modern interior methods are closely related to
“classical” (1960s) barrier methods, which we now describe.

The logarithmic barrier function associated with the problem (4) is

B(x, µ) = f(x) − µ
m∑

j=1

ln cj(x), (10)

where µ is a positive scalar called the barrier parameter. The logarithmic terms are well
defined at points x for which c(x) > 0, but become unbounded above as x approaches any
point where a constraint is zero, and are undefined if cj(x) < 0 for any j. (This behavior
constitutes an obvious rationale for the descriptors “barrier” and “interior”.) Numerous
properties of B(x, µ) are known; see, for example, the classic reference [9] or [36, 12].

For small µ, unconstrained minimizers of B(x, µ) are related in an intuitively appealing
way to the solution x∗ of (4). Given that x∗ satisfies the sufficient optimality conditions
given in Section 2.2.1, then, for a sequence of monotonically decreasing and sufficiently small
values of µ, there is an associated sequence {xµ} of isolated local unconstrained minimizers
of the barrier function (10) such that

lim
µ→0

xµ = x∗ and lim
µ→0

µ

cj(xµ)
= λ∗j . (11)

Under suitable assumptions of smoothness, the points {xµ} define a smooth curve, called
either the barrier trajectory or the central path, that converges to x∗ non-tangentially, from
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Figure 1: The contours of the nonconvex objective function (12) are shown, along with
the boundaries of the ellipsoidal constraint and linear constraint of (13). A trajectory of
local unconstrained minimizers of the logarithmic barrier function, shown in red, begins
at the strictly feasible analytic center of the feasible region, corresponding to µ = ∞, and
converges to the boundary as µ → 0.

the strict interior of the feasible region—not along the boundary. For proofs and additional
details, see, for example, [36, 12].

To illustrate the behavior of the log barrier function, we consider the two-variable
inequality-constrained problem:

minimize 10

3
x1x2 + 1

6
x1 (12)

subject to 19

16
− x2

1 −
5

2
x2

2 ≥ 0 and x1 − x2 + 3

5
≥ 0. (13)

The first (nonlinear) constraint is satisfied inside an ellipse centered at the origin; the second
(linear) constraint cuts off part of the ellipse. Figure 1 shows the contours of f , which is
unbounded below, and the boundaries of these two constraints; the feasible region lies inside
the ellipse, to the right of the line.

The figure makes clear that there are two local minimizers of f in the feasible region.
At the isolated constrained minimizer x∗ = (3

4
, −1

2
), the first constraint is active. The path

of barrier minimizers converging to x∗ is shown in red. The strictly feasible starting point
of the path of barrier minimizers corresponds to the minimizer of −

∑
ln ci(x)—in effect,

to an infinite value of µ, so that the objective function has no effect.
The gradient of the barrier function (10), denoted by gB, is

gB(x, µ) = g(x) −

m∑
j=1

µ

cj(x)
aj(x) = g(x) − µAT(x)C−1(x)1, (14)
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where 1 = (1, . . . , 1)T . The final form in (14) uses the widely established convention in
the interior-point literature that an uppercase version of a letter denoting a vector means
the diagonal matrix whose diagonal elements are those of the vector. The barrier Hessian,
denoted by HB, has the form

HB(x, µ) = H(x) −

m∑
j=1

µ

cj(x)
Hj(x) + µAT(x)C−2(x)A(x). (15)

Since gB(xµ) vanishes, xµ can be interpreted as a highly special point at which the objec-
tive gradient is a nonnegative linear combination of the constraint gradients. Further, the
coefficients in the linear combination have a specific relationship with µ and the constraint
values, i.e.,

g(xµ) =

m∑
j=1

µ

cj(xµ)
aj(xµ) = AT(xµ)λµ(xµ), (16)

where the multiplier estimate λµ satisfies

λµ(x) = µC(x)
−11. (17)

A rearranged component-wise version of (17) is(
λµ(xµ)

)
i
ci(xµ) = µ. (18)

This relationship is similar to complementarity (5), which holds at x∗ between λ∗ and c(x∗),
and is sometimes called perturbed complementarity or the centering property of xµ.

To move from the current point x to xµ, a straightforward strategy is to apply Newton’s
method to a local quadratic model of the barrier function. Omitting arguments, the resulting
n × n primal Newton barrier equations are

HBp = −g + µATC
−11, (19)

where “primal” refers to the original problem variables x.
Although barrier methods were widely used during the 1960s, they suffered a severe

decline in popularity in the 1970s for various reasons, including perceived inefficiency com-
pared to alternative strategies and worries about inherent ill-conditioning. With respect
to the latter, it was observed in the late 1960’s (see [23, 25]) that, if 1 ≤ m̂ < n, then
cond HB(xµ, µ) = Θ(1/µ), so that the barrier Hessian becomes arbitrarily ill-conditioned at
points lying on the barrier trajectory as µ → 0. Although it is impossible after a gap of
more than 20 years to determine precisely why barrier methods became unpopular, concerns
about ill-conditioning clearly played a role; see Section 4.3.

As penalty and barrier methods faded from the scene, the dominant approaches tended
to be based directly on the optimality conditions for constrained optimization, in particular
on properties of the Lagrangian function. Augmented Lagrangian methods and sequential
quadratic programming (SQP) methods became especially popular, and remain so today.
For further details about these methods, see, for example, [16, 10, 28].
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3 The Revolution Begins

3.1 Karmarkar’s method

In 1984, Narendra Karmarkar [21] announced a polynomial-time LP method for which he
reported solution times that were consistently 50 times faster than the simplex method.
This event, which received publicity around the world throughout the popular press and
media, marks the beginning of the interior-point revolution.

Karmarkar’s method had several unusual properties: a special, non-standard form was
assumed for the linear program; nonlinear projective geometry was used in its description;
and no information was available about the implementation. Amid the frenzy of interest in
Karmarkar’s method, it was shown in 1985 (and published the next year [15]) that there
was a formal equivalence between Karmarkar’s method and the classical logarithmic barrier
method applied to the LP problem. Soon researchers began to view once-discarded barrier
methods in a previously unthinkable context: as the source of polynomial-time algorithms
for linear programming.

For several years the tie between Karmarkar’s method and barrier methods was con-
tentious and controversial. Researchers argued about whether the two approaches were
fundamentally different, or very similar, or something in between. Now that the dust has
settled, derivations of interior methods typically involve barrier functions or their properties,
such as perturbed complementarity (18). Readers interested in Karmarkar’s method should
consult his original paper [21], or any of the many comprehensive treatments published
since 1984 (e.g., [19, 30, 41, 35, 44]).

Beyond establishing the formal connection between Karmarkar’s method and barrier
methods, [15] reported computational results comparing a state-of-the-art (in 1985) simplex
code, MINOS [26], and an implementation of the primal Newton barrier method on a widely
available set of test problems. To the astonishment of many who believed that nothing could
beat the simplex method, the barrier method was faster on several of the problems, and
competitive on many others.

At this stage, the interior-point revolution gathered momentum and accelerated in sev-
eral directions, to be described in Sections 4 and 5. First, however, we describe the derivation
of the primal Newton barrier method for LP given in [15].

3.2 The primal Newton barrier method for LP

To make the connection between linear programming and a barrier method, consider a
standard-form linear program—minimize cTx subject to Ax = b and x ≥ 0—with three
properties: (a) the set of x satisfying Ax = b and x > 0 is nonempty; (b) the set (y, z)
satisfying ATy + z = c and z > 0 is nonempty; and (c) rank(A) = m. Because the only
inequality constraints are the bounds x ≥ 0, the associated logarithmic barrier function (see
(10)) is

B(x, µ) = cTx − µ

n∑
j=1

ln xj , (20)
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and the barrier subproblem is to minimize (20) subject to satisfying the equalities Ax = b:

minimize cTx − µ
n∑

j=1

lnxj subject to Ax = b. (21)

The gradient and Hessian of the barrier function (20) have particularly simple forms:

gB = c − µX−1e and HB = µX−2. (22)

The barrier subproblem (21) has a unique minimizer if (b) is satisfied. At the optimal
solution of (21), there exists y such that

gB(x, µ) = c − µX−11 = ATy, so that c = ATy + µX−11. (23)

The central path (barrier trajectory) for a standard-form LP is defined by vectors xµ and
yµ satisfying

Axµ = b, xµ > 0;

ATyµ + µX−1
µ 1 = c. (24)

The central path has numerous properties of interest; see, e.g., [20], [19],[35],[41], and [44].
Assume that we are given a point x > 0 for which Ax = b. Using (22), the Newton

equations (9) for problem (21) are(
µX−2 AT

A 0

)(
p

−y

)
=

(
−c + µX−11

0

)
, (25)

so that the Newton step p in x satisfies

µX−2p + c − µX−11 = ATy (26)

for some Lagrange multiplier vector y. Multiplying (26) by AX2 and using the relation
Ap = 0 to eliminate p, we obtain

AX2ATy = AX2c − µAXe = AX(Xc − µ1). (27)

Since A has full rank and x > 0, the matrix AX2AT is positive definite, so that (27) has a
unique solution y. Using (26), p is defined in terms of y as

p = x +
1

µ
X2(ATy − c).

Because Ax = b and Ap = 0, the new point x + αp will continue to satisfy the equality
constraints for any α. However, α may need to be less than one in order to retain strict
feasibility with respect to the bound constraints.
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4 The Revolution Advances

Following the announcements of Karmarkar’s method and its connection with the logarith-
mic barrier method, researchers began to develop other interior LP methods with improved
complexity bounds, and to derive properties of barrier methods applied to linear programs.
Furthermore, since barrier methods (unlike the simplex method) were originally intended
for nonlinear problems, it was evident that they could be applied not just to linear pro-
gramming, but to other optimization problems, such as quadratic programming, linear and
nonlinear complementarity, and nonlinear programming.

4.1 A change in perspective

The interior-point revolution has led to a fundamental shift in thinking about continuous
optimization. Today, in complete contrast to the era before 1984, researchers view linear
and nonlinear programming from a unified perspective; the magnitude of this change can
be seen simply by noting that no one would seriously argue today that linear programming
is independent of nonlinear programming.

Beyond a broadened perspective, one might wonder whether the revolution has made a
substantive difference: is the net result simply that the log barrier method was rediscovered
and applied to new problems? The answer to this is an emphatic “No”. As we shall
try to indicate in the remainder of the paper, there have been fundamental advances in
complexity theory, algorithms, linear algebra, and solvable problems, all as a result of the
interior revolution.

4.2 Complexity

A signature of interior methods is the existence of continuously parameterized families of
approximate solutions that asymptotically converge to the exact solution; see, for example,
[20]. As the parameter approaches its limit, these paths trace smooth trajectories with
geometric properties (such as being “centered” in a precisely defined sense) that can be
analyzed and exploited algorithmically. These paths also play a critical role in complexity
analyses of interior algorithms.

The elements in a typical proof of polynomial complexity for an interior method are:

• Characterizing acceptable closeness to the solution through a stopping rule. Such
a rule is needed because an interior method that generates strictly feasible iterates
cannot produce, within a finite number of iterations, a solution that lies exactly on a
constraint;

• Defining a computable measure of closeness to the parameterized path associated with
the problem and the algorithm;

• Showing that a Newton step, or a suitably small number of Newton steps, taken from
a point close to the path will stay sufficiently close to the path;

• Decreasing the controlling parameter at a rate that allows a polynomial upper bound
on the number of iterations needed to become close enough to the solution.
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Innumerable papers have been written about complexity issues in interior methods; the
surveys [19, 30, 35, 44] (among others) provide details and further references.

Every discussion of the analysis of interior methods should pay tribute to the work of
Nesterov and Nemirovskii, whose work in the late 1980s extended the scope of polynomial-
time complexity results to a wide family of convex optimization problems; for details, see
[27]. One of their major contributions was to define self-concordant barrier functions. A
convex function φ from a convex region F0 ∈ Rn to R is κ-self-concordant in F0 if (i) φ
is three times continuously differentiable in F0 and (ii) for all y ∈ F0 and all h ∈ Rn, the
following inequality holds:

|∇3φ(y)[h, h, h] | ≤ 2κ
(
hT∇2φ(y)h

)3/2
,

where ∇3φ(y)[h, h, h] denotes the third differential of φ at y and h. The logarithmic barrier
functions associated with linear and convex quadratic programming are self-concordant
with κ = 1. Existence of a self-concordant barrier function for a convex problem is closely
related to existence of polynomial-time algorithms. Using the concept of self-concordance,
new barrier functions have been devised for certain convex programming problems, such
as semidefinite programming, that were previously considered computationally intractable;
see Section 5.

Despite the polynomial bounds typically associated with interior methods, a mystery
remains similar to that still holding for the simplex method: interior methods almost invari-
ably require a number of iterations that is much smaller than the (very large) polynomial
upper bound. The reasons for these disparities are not yet understood, but perhaps one
day they will be.

4.3 Barrier methods revisited

The problem of ill-conditioning, as noted earlier, has haunted interior methods since the
late 1960s, but there has been substantial recent progress in understanding this issue. A
detailed analysis was given in [37] of the structure of the primal barrier Hessian (15) in an
entire neighborhood of the solution. Several papers ([13], [11], [40], [42]) have analyzed the
stability of specific factorizations for various interior methods.

Very recently, the (at first) surprising result was obtained ([39], [43]) that, under con-
ditions normally holding in practice, ill-conditioning of certain key matrices in interior
methods for nonlinear programming does not noticeably degrade the accuracy of the com-
puted search directions. In particular, in modern primal-dual methods (see Section 4.4.1), if
a backward-stable method is used to solve the condensed primal-dual system (the analogue
of the barrier Hessian), the computed solution has essentially the same accuracy as that of
the well-conditioned full primal-dual system (33). However, this result crucially depends on
the special structure of the relevant ill-conditioned matrices, in particular their asymptotic
relationship with Â and the reduced Hessian of the Lagrangian. A similar kind of analysis
applies to the search direction computed with the primal barrier Hessian. Consequently,
ill-conditioning in interior methods undeniably exists, but will tend to be benign.

It turns out that ill-conditioning is not the only defect of primal barrier methods. Even
if the Newton direction is calculated with perfect accuracy, primal barrier methods suffer
from inherently poor scaling of the search direction during the early iterations following a
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reduction of the barrier parameter; see [38, 6]. Thus, unless special precautions are taken, a
full Newton step cannot be taken immediately after the barrier parameter is reduced. This
fundamentally undesirable property implies that the classical primal barrier method will be
unavoidably inefficient.

A fascinating but unresolvable question is whether the loss of popularity of barrier
methods in the 1970s was unfairly blamed on ill-conditioning (which is often a genuine
villain); the observed inefficiencies were probably attributable to the just-mentioned flaw of
the primal barrier method rather than to ill-conditioning.

4.4 New algorithms for old problems

Leading candidates for the most popular algorithms to emerge from the interior revolution
belong to the primal-dual family. Although there is no precise, universally accepted defini-
tion of a primal-dual method, these methods are almost always based on applying Newton’s
method to nonlinear equations stated in terms of the original (“primal”) problem variables,
along with “dual” variables representing the Lagrange multipliers.

4.4.1 Primal-dual methods for linear programming

The optimal solution x of the barrier subproblem (21) for a standard-form LP satisfies the
condition c = ATy + µX−11 for some m-vector y (see (23)). Defining the n-vector z as
µX−11, we may replace this condition by the following two equations:

c = ATy + z and Xz = µe. (28)

The second relation in (28) has a clear resemblance to the perturbed complementarity
condition (18) that holds along the barrier trajectory between the inequality constraints
(here, the variables x) and Lagrange multiplier estimates.

The primal Newton barrier algorithm described in Section 3.2 is formulated in terms of
only primal variables x; the Lagrange multiplier estimate y of (25) arises as a byproduct of
the equality-constrained Newton subproblem. One could alternatively seek primal variables
x and dual variables y (for the equalities) and z (for the inequalities) satisfying the central-
path conditions (24) rewritten to include z:

Ax = b, x > 0, ATy + z = c, z > 0, and Xz = µ1. (29)

Note that only the third equation in (29) is nonlinear.
Applying Newton’s method (6) to these 2n+m equations, we obtain the following linear

system for Newton steps in x, y, and z:


A 0 0

0 AT I

Z 0 X






px

py

pz


 =




b − Ax

c − ATy − z

µe − XZe


 . (30)

Eliminating pz and px gives the linear system

AZ−1XATpy = AZ−1X(c − µX−1e − ATy) + b − Ax, (31)
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where AZ−1XAT is symmetric and positive definite, with the form AD2AT for a nonsingular
diagonal matrix D. Once py is known, pz and px may be calculated directly from the second
and third block rows of (30) without solving any equations.

Primal-dual methods for linear programming have been enormously successful in prac-
tice. For a detailed discussion of many aspects of primal-dual methods, see [41].

A striking effect of the interior revolution has been the magnitude and extent of perfor-
mance improvements in the simplex method, which was (wrongly) thought in 1984 to have
already reached its speed limit. In LP today, interior methods are faster than simplex for
some very large problems, the reverse is true for some problems, and the two approaches are
more or less comparable on others; see [2]. Consequently, commercial LP codes routinely
offer both options. Further analysis is still needed of the problem characteristics that deter-
mine which approach is more appropriate. Unless a drastic change occurs, both approaches
are likely to remain viable into the foreseeable future.

4.4.2 Primal-dual methods for nonlinear programming

Because of inherent flaws in primal barrier methods (see Section 4.3), primal-dual methods
based on properties of xµ are increasingly popular for solving general nonlinear programming
problems; see, for example, the recent papers [8, 4, 11, 7, 14]. As in primal-dual methods
for LP, the original (primal) variables x and the dual variables λ (representing the Lagrange
multipliers) are treated as independent.

The usual motivation for primal-dual methods is to find (x, λ) satisfying the equations
that hold at xµ. In the spirit of (16) and (17), (xµ, λµ(xµ)) satisfy the following n + m
nonlinear equations:

g = AT λ and ciλi = µ, i = 1, . . . ,m. (32)

Applying Newton’s method, we obtain the (full) n + m primal-dual equations for Newton
steps in x and λ: (

W −AT

ΛA C

)(
px

pλ

)
=

(
−g + AT λ

µ1 − Cλ

)
(33)

where W is the Hessian of the Lagrangian evaluated at (x, λ).
All primal-dual methods are based on more or less the idea just described, which is

sometimes presented in terms of the logarithmic barrier function (hence leading to properties
of xµ), or else in terms of perturbed complementarity (18) as a desired property in itself.
Naturally, the equations (33) do not begin to constitute a complete algorithm for nonlinear
programming. Primal-dual methods are the object of active research today, and span a
wide range of approaches to algorithmic details, including

1. formulation of the constraints;

2. solution of the linear system that defines the Newton steps;

3. treatment of indefiniteness;

4. strategies for encouraging progress toward the solution from an arbitrary starting
point;
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5. treatment of equality constraints (an option needed for a general-purpose nonlinear
programming method).

4.5 Linear algebra

Interior methods would not be fast or reliable without efficient, numerically stable linear al-
gebraic techniques for solving the associated distinctive, specially structured linear systems.
Great advances have taken place since 1984 in sparse Cholesky-based techniques for fac-
torizing matrices of the form AT D2A, where D is diagonal and is becoming ill-conditioned
in a specified manner—either some elements of D are becoming infinite while the others
are Θ(1), or else some are approaching zero while the remainder are Θ(1). In addition,
techniques for sparse symmetric indefinite factorizations of matrices of the form(

W AT

A D2

)
, (34)

where D is diagonal and ill-conditioned as just described, are important. See, for example,
[11, 13, 40, 42].

5 New Problems

The flowering of interior methods, and in particular the realization that efficient algorithms
exist for a wide class of convex optimization problems, has led to the application of interior
methods to a broad range of problems that were previously considered to be computationally
intractable.

Certain problems involving eigenvalue optimization have been particularly amenable to
solution by interior methods; for details, see the excellent survey [22]. In the next section we
summarize a few key ideas in semidefinite programming (SDP), an area of intense research
during the past few years.

5.1 The semidefinite programming problem

Semidefinite programming may be viewed as a generalization of linear programming, where
the variables are n × n symmetric matrices, denoted by X, rather than n-vectors. In SDP,
we wish to minimize an affine function of a symmetric matrix X subject to linear constraints
and semidefiniteness constraints, the latter requiring (in words) that “X must be positive
semidefinite”. This relation is typically written as X � 0, a form that strongly resembles
inequality constraints in ordinary continuous optimization. (When X is a symmetric matrix,
the condition X 	 0 means “X is positive definite”.)

Let Sn denote the set of real n×n symmetric matrices, let C and {Ai} be real symmetric
n×n matrices, and let b be a real m-vector. The semidefinite programming problem is the
following:

minimize
X∈Sn

trace(CX) (35)

subject to trace(AiX) = bi, i = 1, . . . ,m (36)

X � 0. (37)
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When the SDP problem is written in this form, its similarity to a standard-form LP (2) is
hard to miss, but, not surprisingly, many extra complications arise in SDP. For example,
the feasible region defined by (36) and (37) is not polyhedral, so there is no analogue of the
simplex method. Furthermore, several major regularity assumptions are needed to obtain
duality results analogous to those in LP. These assumptions will not be stated here; see [22]
for details.

Nesterov and Nemirovskii [27] show that the function log det(X) is a self-concordant
barrier function for the semidefinite programming problem, which means that the SDP (35)–
(37) can be solved in polynomial time via a sequence of barrier subproblems parameterized
by µ:

minimize
X∈Sn

trace(CX) − µ log det X (38)

subject to trace(AiX) = bi, i = 1, . . . ,m. (39)

Under suitable regularity assumptions, there is a unique sequence {Xµ, yµ}, where Xµ

is a symmetric positive definite matrix satisfying the constraints (36) and (37), and yµ is an
m-vector, such that Xµ and yµ together satisfy the following “perturbed complementarity”
condition

X(C −

m∑
i=1

yiAi) = µI, (40)

with C −
∑m

i=1
yiAi � 0. Newton’s method cannot be applied directly to solve (36) and

(40) because the matrix on the left-hand side of (40) is not symmetric. A primal approach,
first suggested in [1], is to replace (40) by the relation

X(C −
∑

yiAi) + (C −
∑

yiAi)X = 2µI.

An analogous primal-dual method, called the “XZ + ZX method” for obvious reasons, is
defined by finding (Xµ, yµ, Zµ), where Xµ 	 0 and Zµ 	 0, such that

trace(AiX) = bi, Z = C −
∑

yiAi, and XZ + ZX = 2µI. (41)

Note the strong parallel between the two final equations in (41) and the primal-dual equa-
tions (28) in linear programming.

Semidefinite programming is an extremely lively research area today, producing new
theory, algorithms, and implementations; see the surveys [33] and [34].

5.2 New applications of interior methods

Interior methods are playing major roles in at least two areas: approximation techniques
for NP-hard combinatorial problems, and system and control theory.

In the former, it has recently been shown that certain semidefinite programs and NP-
hard problems are closely related in the following way: solution of the semidefinite program
leads to an approximation whose objective value is provably within a known factor of the
optimal objective value for the associated NP-hard problem. For example, a semidefinite
program formulation leads to an approximate solution of the max-cut problem whose objec-
tive value is within a factor of 1.14 of the optimal value; see [18]. This kind of relationship
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guarantees that good approximate solutions to NP-hard problems can be computed in poly-
nomial time.

Interior methods are important in system and control theory because of their connection
with linear matrix inequalities, which have the forms

F0 +

p∑
i=1

xiFi 	 0 or F0 +

p∑
i=1

xiFi � 0, (42)

where x is a p-vector and {Fi} are real symmetric matrices. Many constraints in system
and control theory, including convex quadratic inequalities, matrix norm inequalities, and
Lyapunov matrix inequalities, can be expressed as linear matrix inequalities. It is straight-
forward to see that the forms (42) allow the variables to be symmetric matrices.

Numerous problems in system and control theory involve optimization of convex func-
tions of matrix arguments subject to linear matrix inequalities. Because these are convex
programming problems, it is possible to apply polynomial-time interior methods. For de-
tails, the reader should consult [3].

6 Summary

The interior point revolution has had many highly positive results, including

• a deeper and more unified understanding of constrained optimization problems;

• continuing improvements to theory and methods;

• more algorithmic options for familiar problems, even for linear programming;

• the ability to solve new problems.

One could argue, however, not entirely whimsically, that the interior-point revolution
has had some negative consequences. For example, both teaching linear programming and
solving linear programs are much more complicated than they used to be. With respect to
the former, instructors in linear programming courses face increased pedagogical challenges.
Before 1984, it was perfectly acceptable simply to describe the simplex method; today, any
credible treatment of linear programming needs to include interior methods. Similarly,
someone with an LP to solve can no longer be content with mindless application of the
simplex method.

On balance, the interior revolution has energized and expanded the field of constrained
optimization. Although the revolutionary pace has (inevitably) slowed down since its first
heady days, ample opportunities remain for many further years of lively and innovative
research.

References

[1] F. Alizadeh, J.-P. Haeberly, and M. L. Overton (1998). Primal-dual interior-point meth-
ods for semidefinite programming: convergence rates, stability, and numerical results,
SIAM J. Opt. 8, 746–768.

17



[2] R. E. Bixby (2002). Solving real-world linear programs: a decade or more of progress,
Operations Research 50, 3–15.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan (1994). Linear Matrix Inequal-

ities in System and Control Theory, Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania.

[4] R. H. Byrd, J. C. Gilbert, and J. Nocedal (2000). A trust region method based on
interior point techniques for nonlinear programming, Math. Prog. 89, 149–185.
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WHAT IS MOTIVIC MEASURE?

THOMAS C. HALES

Abstract. This article gives an exposition of the theory of arithmetic
motivic measure, as developed by J. Denef and F. Loeser.

1. Preliminary Concepts

There is much that is odd about motivic measure if it is judged by measure
theory in the sense of twentieth century analysis. It does not fit neatly with
the tradition of measure in the style of Hausdorff, Haar, and Lebesgue.
It is best to view motivic measure as something new and different, and to
recognize that when it comes to motivic measure, the term ‘measure’ is used
loosely.

Motivic measure will be easier to understand, once two of its peculiarities
are explained. The first peculiarity is that the measure is not real-valued.
Rather, it takes values in a scissor group. An introductory section on scissor
groups for polygons will recall the basic facts about these groups. The
second peculiarity is that rather than a boolean algebra of measurable sets,
we work directly with the underlying boolean formulas that define the sets.
The reasons for working directly with boolean formulas will be described in
a second introductory section.

After these two introductory remarks, we will describe ‘motivic counting’
in Section 2. Motivic counting is to ordinary counting what motivic measure
is to ordinary measure. Motivic counting will lead into motivic measure.

1.1. Scissor Groups for polygons. Motivic volume is defined by a process
that is similar to the scissor-group construction of the area of polygons in
the plane. To draw out the similarities, let us recall the construction. It
determines the area of a polygons without taking limits.

Any polygon in the plane can be cut into finitely many triangles that
can be reassembled into a rectangle of unit width. Figure 1 illustrates three
steps (2, 3, and 4) of the general algorithm. The algorithm consists of 5
elementary transformations. (1) Triangulate the polygon. (2) Transform
triangles into rectangles. (3) Fold long rectangles in half. (4) Rescale each
rectangle to give it an edge of unit width. (5) Stack all the unit width
rectangles end to end. The length of the unit width rectangle is the area.

An abelian group encodes these cut and paste operations. Let F be the
free abelian group on the set of polygons in the plane.

We impose two families of relations:
1
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Figure 1. Triangles transform into unit width rectangles
by scissor and congruence relations. Later, we will transform
ring formulas into algebraic varieties by scissor and congru-
ence relations.

Scissor relations. If P is a polygon that can be cut into polygons P1 and
P2, then

[P ] = [P1] + [P2]

Congruence relations. If P and P ′ are congruent polygons then

[P ] = [P ′].

The scissor group Spoly of polygons is defined as the free abelian group
subject to these two families of relations. In some sense, this entire article
is an exploration of scissor and congruence relations in diverse contexts. By
and by, we will construct several closely related scissor groups Spoly, Scount,
Sring, Scover, and Smot, each constructed as a free abelian group modulo
scissor and congruence relations.

Theorem 1.1. The polygon scissor group Spoly of polygons is isomorphic
to the additive group of real numbers R. Under this isomorphism, the real
number attached to the class [P ] of a polygon is its area.

Proof. A group homomorphism from Spoly to R sends each class [P ] to its
area. It is onto, because there are polygons of every positive real area, and
negations of polygons of every negative real area. By scissor and congruence
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relations, every element of the scissor group is represented by the difference
of two unit width rectangles. To be in the kernel, the two rectangles must
have the same area; but then they are congruent, and their difference is zero
element of Spoly. Thus, the homomorphism is also one-to-one. ¤

The area function on the set {P} of polygons thus factors through Spoly.

(1) {P} → Spoly → R
P 7→ [P ] 7→ area(P )

We might ponder which of these two maps (P 7→ [P ] or [P ] 7→ area(P ))
captures the greater part of the area-taking process. Motivic measure com-
mits to a position on this issue: the first stage (P 7→ [P ]) is identified as the
area-taking process and the second stage [P ] 7→ area(P ) is a specialization
of the area. In this case, specialization is an isomorphism. Our approach to
measure in this article is decidedly unsophisticated: taking the measure of
something consists in mapping that thing into its scissor group, P 7→ [P ].

1.2. The measure of a formula. Traditionally, we take the measure of a
set X = {X | φ(x)} (say a subset of a locally compact space), but we do not
take the measure of the formula φ defining a set. With motivic measure, we
take the measure of the formula directly. Concretely, the formula

(2) ‘x2 + y2 = 1’

defines the circle

(3) {(x, y) | x2 + y2 = 1}.
With motivic measure, we take the measure of the equation of the circle
(Equation 2) rather than the measure of the circle itself (Equation 3). At-
tention shifts from sets to formulas.

What purpose does it serve to measure formulas rather than the under-
lying set? As algebraic geometers are eager to remark, each formula defines
an infinite collection of sets. For instance, for each finite field Fq, we can
take the set of Fq points on the circle:

(4) {(x, y) ∈ F2
q | x2 + y2 = 1}.

We will see that the motivic measure of the formula is a universal measure
in the sense that the value it attaches to the formula does not commit
us to any particular field. And yet if we are supplied with a particular
field, it will be possible to recover the traditional measure of a set from the
motivic measure of its defining formula. In this sense, motivic measure is to
traditional measures what an algebraic variety is to its set of solutions.

2. Counting measures and Finite Fields

Counting is the fountainhead of all measure. The measure of a finite set is
its cardinality. At the risk of belaboring the point, in preparation for what
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is to come, let us recast ordinary counting. The scissor relation for disjoint
finite sets is

[X ∪ Y ] = [X] + [Y ].

More generally, if we allow the sets to intersect, it is

(5) [X ∪ Y ] = [X] + [Y ]− [X ∩ Y ].

The congruence relation asserts that

[X] = [X ′].

whenever there is a bijection between X and X ′. The scissor group Scount

is the quotient of the free abelian group on finite sets satisfying the scissor
and congruence relations. It is is isomorphic to Z. The cardinality #X of a
finite set X factors through the scissor group

X 7→ [X] 7→ #[X] ∈ Z.

Of course, if our only purpose were to count elements in finite sets, this
construction is overkill. The first motivic measure that we present is an
analogue of this approach to counting. We call it the motivic counting
measure. The scissor relation will be similar to Equation 5.

2.1. Ring formulas. Traditional measure calls for a full discussion of the
class of measurable sets. Since we work with formulas rather than sets, our
approach calls for a full discussion of the class of formulas to be measured.

We allow all syntactically correct formulas built from a countable collec-
tion of variables xi, parentheses, and the symbols

(6) ∀, ∃, ∨, ∧, ¬, 0, 1, (+), (−), (∗), (=)

More precisely, we allow all formulas in the first-order language of rings. A
formula that has been constructed from these symbols will be called a ring
formula. We avail ourselves of the usual mathematical abbreviations and
renamings of variables. We write 3 for 1 + (1 + 1), xn for x ∗ x ∗ x · · · ∗ x (n
times), xy for x ∗ y, a + b + c for a + (b + c), and so forth.

With usual abbreviations,

‘∀x y z. x3 + y3 = z3’

is a ring formula, because its syntax is correct. But

‘))∀+ ∀ = 2∀((’
and

‘ ∧ ∨ ∧ ∨ ∧ ’

are not ring formulas.
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2.2. The scissor group of ring formulas. We imitate the construction of
the scissor groups Spoly and Scount to build the scissor group of ring formulas.

Take the free abelian group on the set of ring formulas.
We impose two families of relations. The scissor relation takes the form

established in Equation 5 for unions.
Scissor relations. If φ1 ∨ φ2 is a disjunction of two formulas, then

(7) [φ1 ∨ φ2] = [φ1] + [φ2]− [φ1 ∧ φ2].

To describe the congruence relation, we must decide what it should mean
for two ring formulas to be congruent. By way of analogy, in the case of
polygons, two are congruent if there is a bijection between the two sets that
is induced by an isometry. Our first guess at the congruence relation for
ring formulas is that two ring formulas are congruent if there is a bijection
between the sets of solutions for each finite field Fq. (We limit ourselves to
finite fields because we are attempting to imitate the counting measure of
finite sets.) However, there are two modifications that we must make to this
first guess to arrive at a workable relation.

The first modification is to use pseudo-finite fields rather than finite fields.
A pseudo-finite field is an infinite perfect field such that every absolutely
irreducible variety over the field has a rational point and such that there is
a unique field extension of each finite degree (inside a fixed algebraic closure
of the field). The defining properties of a pseudo-finite field are properties
possessed by finite fields (except the part about being infinite). Moreover,
logicians have found that the behavior of pseudo-finite fields is essentially no
different from the generic behavior of finite fields, but they avoid the hassles
that appear in positive characteristic. For those seeing pseudo-finite fields
for the first time, it would not be a severe distortion of the facts to ignore
the ‘pseudo’ and to work instead with finite fields.

The second modification is to require that the bijection between the solu-
tions come from a ring formula that is independent of the underlying field.
We are now ready to state the congruence relations.
Congruence relations.

[φ] = [φ′]

if there exists a ring formula ψ such that for every pseudo-finite field K
of characteristic zero, the interpretation of ψ gives a bijection between the
tuples in K satisfying φ and the tuples in K satisfying φ′.

Example 2.1. The congruence relation gives

[‘∃x. x2 + bx + c = 0’] = [‘∃X. X2 = B2 − 4C’]

The formula ψ realizing the congruence and the bijection at the level of
points is

‘(b = B) ∧ (c = C)’.
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That is, in every pseudo-finite field of characteristic zero, a monic quadratic
polynomial has a root if and only if its discriminant is a square.

Definition 2.2. The scissor group Sring of ring formulas is defined as the
free abelian group subject to the scissor and congruence relations.

2.2.1. Counting measure.

Definition 2.3. The counting measure of a ring formula φ is its class [φ] in
the scissor group of ring formulas.

2.2.2. Fubini and Products. There is a trivial sort of Fubini theorem for
finite sets: the cardinality of a Cartesian product of two sets is the product
of the cardinalities of the two sets. To make sense of a Fubini theorem for
ring formulas, it is necessary to introduce products to the scissor groups;
that is, we need a scissor ring. This is easy to arrange. If φ1(x1, . . . , xn) is
a formula with free variables x1, . . . , xn and φ2(y1, . . . , ym) is a formula with
free variables y1, . . . , ym, and if the free variables of φ1 are distinct from the
free variables of φ2, then we declare the product to be

φ1(x1, . . . , xn) ∧ φ2(y1, . . . , ym).

This induces a well-defined product1 on the scissor group

(8) [φ1(x)][φ2(y)] = [φ1(x) ∧ φ2(y)].

Under this product, the scissor group becomes a ring. Equation 8 asserts
that counting measure satisfies a rather trivial Fubini theorem for ring for-
mulas – at least for ring formulas without any shared free variables.

2.2.3. The universal nature of the counting measure. The counting measure
[φ] of a ring formula φ is designed to be the universal counting measure for
ring formulas. For every finite field Fq, there is a counting measure on ring
formulas:

(9) φ 7→ #q(φ) = #{(x1, . . . , xn) ∈ Fn
q | φFq(x1, . . . , xn)}.

It gives the number of solutions to the ring formula over a particular finite
field. In contrast, the counting measure of a ring formula takes values in a
scissor ring whose construction bundles all pseudo-finite fields together.

We can be precise about the way in which the counting measure bundles
the counting measures #q(φ). Each formula φ gives a function q 7→ #q(φ),
an integer-valued function on the set of prime powers. Let F be the ring
of all integer-valued functions on the set {pr} of prime powers. Declare two
functions equivalent, if they take the same value at pr for all r and for all
but finitely many p. Write F/ ∼ for the quotient of F under this equivalence
relation.

1We have a moving lemma: the congruence relation on the scissor group can be used to
relabel the free variables of a formula, so that free variables of the two factors are always
distinct.
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Theorem 2.4. There exists a ring homomorphism N from the scissor ring
Sring to F/ ∼ that respects counting: #∗(φ) = N([φ]).

In other words, with only a finite amount of ambiguity, the counting
measure specializes to counting solutions to ring formulas over finite fields.
To say that N is a ring homomorphism is to say that it is compatible with
products and Fubini. Unlike the earlier isomorphisms for polygons Spoly

∼= R
and finite sets Scount

∼= Z, here we make no claim of isomorphism between
the scissor group Sring and the target ring F/ ∼.

The proof of the theorem relies on ultraproducts, a standard tool in logic.

2.3. Improving the scissor ring. The shortcoming of the scissor ring
Sring is that is too much about it has been left inexplicit. In our discussion
of the area of planar polygons, we found a handy set of generators (unit
width rectangles). Our current aim is to find a handy set of generators of
a somewhat modified scissor ring Smot. The idea is to take a ring formula,
and through a process of “quantifier elimination” arrive at an equivalent
ring formula that does not involve any quantifiers (that is, the symbols ∀, ∃
will be eliminated). A formula without quantifiers belongs less to the realm
of logic than to the realm of algebraic geometry. A suggestive example of a
quantifier-free formula is

(f1 = 0) ∧ (f2 = 0) ∧ · · · ∧ (fn = 0).

That is, the zero set of an affine variety. In fact, we will find that the
improved scissor ring is defined as a quotient of the free abelian group on
the set of varieties over Q. The details of this construction will reveal what
is so motivic about motivic measure.

2.4. A scissor ring for coverings. Each ring homomorphism f : Sring →
R defines a specialization of the counting measure

φ 7→ [φ] → f [φ] ∈ R.

The ring F/ ∼ is one of many possible specializations R.
Another specialization of Sring comes from n-sheeted covers:

Definition 2.5. We say that one formula φ(x) is an n-sheeted cover of an-
other formula φ′(x′) if there exists a ring formula ψ(x, x′) such that for every
pseudo-finite field of characteristic zero, ψ gives an n to 1 correspondence
between the solutions x of φ(x) and the solutions x′ of φ(x′).

Example 2.6. Let φ(x) be the formula ‘x 6= 0’ and let φ′(y) be the formula

‘∃ z. (z2 = y) ∧ (y 6= 0)’.

The formula ψ(x, y) given by

‘x2 = y’,

presents φ as a 2-sheeted cover of φ′.
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The congruence condition for Sring asserts that if φ is a 1-sheeted cover of
φ′, then they give the same class in Sring. A broader congruence condition
can be given as follows.
Congruence (Covers). If φ is an n-sheeted cover of φ′ for some n, then

[φ] = n[φ′].

We may form a new scissor ring Scover with this broader congruence
condition and the old scissor relation. We have a canonical surjection
Sring → Scover.

2.5. The scissor group of motives. Generators. Let VarQ be the cat-
egory of varieties over the field of rational numbers Q. We take the free
abelian group generated by the objects of VarQ.

An example of a element of the free abelian group is [A1], the genera-
tor attached to the affine line. This particular generator will be of special
importance in the constructions that follow. We write L = [A1] for this
element and for its image in various scissor groups. (The ‘L’ is for Lefschetz,
as in Lefschetz motive.)

There are two types of relations: scissor relations and congruence rela-
tions. Our scissor relation will be rather crude, but justifiably so, since the
Zariski topology is a coarse topology that limits the possibilities for a scissor
relation. The only cutting that will be permitted is that of partitioning a
variety into a closed subvariety and its complement.

Scissor Relation. If Z is a closed subvariety of X, then

[X] = [Z] + [X \ Z].

The congruence relation is more involved than the scissor relation. If we
make a direct translation of the congruence relation for the scissor group of
ring formulas, we might guess that the congruence condition between two
varieties X and Y should be the existence of a correspondence Ψ between X
and Y that induces a bijection between X(K) and Y (K) for every pseudo-
finite field of characteristic zero. This first guess is suggestive: the congru-
ence relation should involve an algebraic correspondence. This suggestion
lands us deep in the territory of motives. Here is the precise definition of
the congruence relation.

Congruence Relation.
[X] = [Y ]

whenever X and Y are nonsingular projective varieties that give the same
virtual Chow motive. We will uncoil this definition a bit below. All that
is ‘motivic’ about motivic measure stems from this particular congruence
relation.
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Definition 2.7. The quotient of the free abelian group by the scissor and
congruence relations is the motivic scissor ring K. (The letter ‘K’ is the
standard notation for a Grothendieck group, which for our purposes is just
another name for a scissor group.) The localized version K[L−1]⊗Q will be
called the localized motivic scissor ring and denoted Smot. (It will become
clear in Section 3.6.3 why it is useful to invert L.)

It is time to uncoil the definition of this congruence relation. There is a
category of Chow motives. To describe this category, we assume familiarity
with the Chow groups Ai(X) of a variety X. They are groups of cycles
of a given codimension i modulo the subgroup of cycles that are rationally
equivalent to 0. A detailed treatment of cycles, rational equivalence, and
Chow groups can be found in [8]. Other good treatments of Chow motives
can be found in [16] and [9].

An object in the category of Chow motives is a triple (X, p, m) where X
is a smooth projective variety of dimension d, p is an element in the Chow
ring Ad(X ×X) that is a projector (p2 = p), and m in an integer. The set
of morphisms from (X, p, m) to (X, p′,m′) is defined to be the set

p′Ad+n−m(X × Y )p.

Varieties that are not isomorphic as varieties can very well become isomor-
phic when viewed as Chow motives. For example, isogenous elliptic curves
are isomorphic as Chow motives.

There is a canonical morphism from the Grothendieck ring of the category
VarQ to the Grothendieck ring of the category of Chow motives. We let K
be the image of this morphism. To say that two varieties are equal as virtual
Chow motives is to say that they have the same class in K.

2.6. The motivic counting measure. The following theorem follows from
a deep investigation of Chow motives, and the theory of quantifier elimina-
tion for pseudo-finite fields.

Theorem 2.8. There exists a unique ring homomorphism Scover → Smot

that satisfies the following property (Zero Sets).

Zero Sets. If φ is a ring formula that is given by the conjunction of poly-
nomial equations, then [φ] is sent to the affine variety defined by those
polynomial equations.

There are ring homomorphisms Scount → Scover → Smot. We use the
notation φ 7→ [φ] for the class of φ in any of these rings, depending on the
context.

Definition 2.9. The composite map φ 7→ [φ] ∈ Smot will be called the
motivic counting measure of the formula φ.

The motivic counting measure of a ring formula is thus represented by a
rational linear combination of varieties over Q. I like to think of the motivic
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counting measure as counting the number of solutions of the ring formula
over finite fields in a way that does not depend on the finite field. Instead
of giving the answer as a particular number, it gives the answer in terms of
a formal combination of varieties having the same number of solutions over
a finite field. Here is the precise statement.

Theorem 2.10. Let φ be a ring formula, and let
∑

ai[Xi] be a represen-
tative of the motivic counting measure [φ] as a formal linear combination
of varieties. Choose a model of each Xi over Z. For all r and for all but
finitely many primes p, the number of solutions of φ in Fpr is equal to

∑
ai#Xi(Fpr).

Example 2.11. As an example, let us calculate the motivic counting mea-
sure of the ‘set’ of nonzero cubes. The formula is given by

φ(x) : ‘∃y. (y3 = x) ∧ (x 6= 0)’.

The scissor relation can be used to break φ into two disjoint pieces φ =
φ1 ∨ φ2: the part φ1 on which −3 is a square and the part φ2 on which it
is not. Let M be the class in Smot corresponding to the zero-dimensional
variety x2 + 3 = 0. The class M has two solutions or no solutions according
as −3 is a square or not. When −3 is a square, the cube roots of unity lie
in the field, so that the nonzero points on the affine line give a 3-fold cover
of φ1 (under y 7→ y3). Thus, φ1 has measure(

L− 1
3

)
M
2

.

On the other hand, if −3 is not a square, each non-zero element of a pseudo-
finite field of characteristic zero is a cube, so that φ2 has measure

(L− 1)
(

1− M
2

)
.

The sum of these two terms is the measure of φ in Smot.

3. Locally Compact Fields and Haar Measures

This section makes the transition from finite fields to locally compact
fields and from counting measures to additive Haar measures.

In Section 2, we developed a universal counting measure for ring formula.
It may be viewed as counting solutions to the ring formula over a finite field
in a way that does not depend on the finite field.

Counting measures are a rather simple and uninteresting type of measure.
In this section, we construct a universal (motivic) measure with ties to locally
compact fields. This new measure may be viewed as the volume expressed in
a way that does not depend on the locally compact field. To carry out the
construction, we must work with a different collection of formulas (called
DVR formulas) that are better adapted to locally compact fields. ‘DVR’ is
an acronym for discrete valuation ring.
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3.1. Examples of rings. To make the transition from finite fields to locally
compact fields, we wish to replace ring formulas with formulas in a language
that has a rich assortment of locally compact structures.

Example 3.1. Let C[[t]] be the ring of formal power series with complex
coefficients. A typical element of this ring has the form

x =
∞∑

i=k

ait
i

(with no constraints on the convergence of the series). Pick the initial index
k so that ak 6= 0 (if x 6= 0).

The valuation of x is defined to be the integer k:

val(x) = k.

The angular component of x is defined to be the complex number ak.

ac(x) = ak ∈ C×.

(In the special case x = 0, we set val(0) = ∞ and ac(0) = 0.)

The name angular component is not meant to suggest any precise con-
nection to angles. The name is based on a loose analogy with the polar
coordinate representation of a complex number: just as the angular com-
ponent θ of a nonzero complex number reiθ distinguishes among complex
numbers of the same magnitude (or valuation) r, so the angular component
of a formal power series helps to distinguish among formal power series of a
given valuation k.

There are many other rings with similar functions, ac and val. For ex-
ample, we can change the coefficient ring of the formal power series from C
to any other field k to obtain k[[t]]. Or we can take the field of fractions of
k[[t]], which is the field of formal Laurent series with coefficients in k:

k((t)) = {
∞∑

−N

ait
i | ai ∈ K}.

For each prime p, there are valuation and angular component functions
defined on the field of rational numbers. If x is a nonzero rational number,
pick integers a, b, c, N so that

x = apN +
bpN+1

c
,

where c is not divisible by p, and a ∈ {1, . . . , p− 1}. The integers a and N
are uniquely determined by this condition. Define the valuation of x to be
valp(x) = N ∈ Z and the angular component of x to be image of a modulo
p in Fp.

Example 3.2. If p = 2 and x = 17/8, then

17/8 = 1.2−3 + 2, val2(17/8) = −3, ac(17/8) = 1 ∈ F2.
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Other examples, can be obtained from this one by completion. For each
p,

d(x, y) = (1/2)valp(x−y)

is a metric on the set of rational numbers. The completion is a locally
compact field, called the field of p-adic numbers Qp. The valuation valp and
angular component function ac functions extend to the completion.

3.2. The DVR language. We have seen by example that there are many
rings with functions val and ac. In each case, there are three separate rings
that come into play: the domain of the functions val and ac, the range of the
function val (which we augment with a special symbol {∞} for the valuation
of 0), and the range of the function ac. We call these rings the valued ring,
the value group, and the residue field, respectively.

We formalize this relationship as a language in first-order logic with func-
tion symbols val and ac. We allow ourselves to build syntactically well-
formed expressions with variables, parentheses, quantifiers, the function
symbols val and ac, the usual ring operations (0, 1, (+), (−), (∗), (=)) on
the valued ring and residue field, and the usual group operations and in-
equalities on the value group (0, (+), (≤)). These formulas will use variables
of three different types xi for the value ring, mi for the value group, and ξi

for the residue field. Quantifiers ∀, ∃ can be used to bind all three sorts of
variables.

The construction of first-order languages is commonplace in logic, but
even without any background in logic, it is not hard to guess whether a
formula is syntactically correct. We allow standard mathematical abbrevia-
tions similar to those introduced above for ring formulas.

‘∀y. (∃x. x2 = y) =⇒ (∃m. 2m = val(y)).’

is syntactically correct. But

‘∀f. ∀x. ∀y.f(y, ac(y))’

is not well-formed, because quantifiers are not allowed over higher-order
relations f in a first-order language. Also,

‘∀x ξ. (0 ≤ x) ∨ (ac(x) = ξ)’

is not well-formed, because of a type error; the variable symbol x appears
once as an integer 0 ≤ x and again as variable in the valued field ac(x).

A syntactically correct formula is called a DVR formula. The aim of
motivic measure is to compute the “volume” of a DVR formula in a universal
way; that is, in a way that does not depend on the underlying locally compact
field.

3.3. Assumptions on the ring. The various examples that we have men-
tioned are all structures for the DVR language: rings of formal power series
k[[t]], fields of formal Laurent series k((t)). For each prime p, (Q, ac, valp) is
a structure for the language, as well as its completion (Qp, ac, valp).
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We will temporarily restrict the set of examples to structures (K, k, ac, val)
that satisfy the following conditions.

• K is a valued field of characteristic zero, with valuation function
val : K → Z ∪ {∞} and angular component functions ac : K → k.

• The residue field k has characteristic zero.
• K is henselian. (We review the definition below.)

Examples that satisfy these conditions include the fields k((t)), where k has
characteristic zero. The analogy that will guides us is that these fields stand
in the same relation to locally compact DVR fields, as pseudo-finite fields
do to finite fields.

3.4. Henselian field. There is only one plausible definition for a henselian
field: A field is henselian if the field satisfies Hensel’s lemma.

Hensel’s lemma gives checkable conditions on a polynomial that insure
that it has a root in a given neighborhood. Hensel’s lemma occupies same
ground in the realm of DVR rings that the intermediate value theorem
occupies in the realm of real numbers. (The intermediate value theorem
also gives checkable conditions on a polynomial that insure that it has a real
root in a given neighborhood.)

Our experience with motivic counting measures has alerted us to the im-
portance of quantifier elimination, that is, the process of replacing a formula
with quantifiers ∀, ∃ with an equivalent formula that does not contain quan-
tifiers. The simplest case of quantifier elimination is the determination of
when there exists a root of a polynomial. Without a criterion for the ex-
istence of roots to polynomials, quantifier elimination would be impossible.
For the pseudo-finite fields, this is handled through the defining property
of pseudo-finite fields that “every absolutely irreducible variety has a root.”
For real fields, quantifier elimination is based on the intermediate value
theorem. For henselian fields, quantifier elimination is based on Hensel’s
lemma.

Lemma 3.3. (Hensel’s lemma) For every monic polynomial f ∈ K[x],
whose coefficients have non-negative valuation, and for every x such that

val(f(x)) > 0

and
val(f ′(x)) = 0,

there exists y ∈ K such that f(y) = 0 and val(y − x) > 0.

This is stated as a lemma, but we view it as a condition on the field
K and its valuation. It can be proved that the fields k((t)) and Qp are
henselian by showing that under the hypotheses of Hensel’s lemma, Newton’s
approximations to the roots

x0 = x
xn+1 = xn − f(xn)/f ′(xn)

converge to a root.
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3.5. Quantifier elimination.

Theorem 3.4. (Pas [14]) Let K be a field satisfying the other conditions
enumerated in 3.3 with residue field k . Let φ be a DVR formula. Then
there is another formula φ′ without quantifiers of the valued field sort such
that

∀(x, ξ, m) ∈ Kn × km × (Z ∪ {∞})r. φK(x, ξ,m) = φ′ K(x, ξ, m).

Moreover, the formula φ′ can be chosen to be independent of the structure
K.

3.6. Outer measure of a DVR formula. As a first step toward con-
structing the measure of a DVR formula, we will define an outer measure of
a formula. To motivate this construction, it might be helpful first to describe
an analogous construction in Euclidean space.

3.6.1. An outer measure in Euclidean space. Fix a positive integer m. Tile
Euclidean space with cubes of width 1/2m whose vertices are centered at
points a with coordinates ai ∈ Z/2m.

According to the Calculus 101 approach to volume, we can approximate
the volume of a set by counting the number of cubes that it meets. Let A
be a bounded set in Rn. Let Cm(A) be the set of cubes in this tiling that
meet A. In our naive approach to measure, let us define the outer measure
of A at level m to be

(10)
#Cm(A)

2mn
,

that is the number of cubes divided by the scaling factor 2mn. (If doing so
did not involve logical circularity, we would identify 1/2mn with the volume
of cube and the entire expression as the volume of the set Cm(A) of cubes.)

Figure 2. Volumes of DVR formulas can be approximated
in Calculus 101 fashion by counting centers of cubes that
meet a given formula, scaled according to the size of the
cubes.

The outer motivic measure of a DVR formula will be formed in an entirely
analogous way. Of course, we will need to decide what to use for cubes, how
to count the number of cubes that “meet” a given formula, and what scaling
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factor to use. Once we make these decisions, the formula for outer measure
will take precisely the same form as Equation 10.

In the planar case, we gave a construction of area of polygons as taking
values in a scissor group Spoly. The outer approximation of any bounded
planar set A by squares gives a value in the scissor group of polygons. Here
too, if our outer approximation to a DVR formula is with a ring formula,
then the value of the outer measure of the DVR formula will be in a scissor
ring Smot.

Given all our preliminaries, it almost goes without saying at this point
that rather that the counting of cubes that takes place in the numerator of
Equation 10 will be replaced with the motivic counting measure of a ring
formula.

3.6.2. Cubes. What is a cube? Well, it is a product of equal width intervals.
In DVR formulas, a cube centered at a of “width” m is again a product of
intervals:

{(x1, . . . , xn) ∈ Kn | val(xi − ai) ≥ m, for i = 1, . . . , n}.
If K = k[[t]], then the interval around a formal power series a is the set
of all formal power series with the same leading terms. Shaking (wagging)
the tails of the power series fills out the interval. In other words, we can
make precise the idea of covering a DVR formula with cubes by replacing
each solution to the DVR formula with a bigger set where the tails of the
solutions are allowed to vary.

Let us make this precise. We have truncation map

k[[t]] → k[[t]]/(tm) ' km

∑∞
0 ait

i 7→ ∑m−1
0 ait

i 7→ (a0, . . . , am−1).

In the opposite direction, given b ∈ Km, there is a polynomial with those
coefficients

p(b, t) =
m−1∑

0

bit
i ∈ k[[t]]

Definition 3.5. Let φ be a DVR formula with free variables (x1, . . . , xn)
and no free variables of other sorts. An outer ring formula φm approximation
to φ (at level m) is a ring formula in nm free variables uij such that over
every field k:

{u ∈ knm | φm(u)} =
{u ∈ knm | ∃a1, . . . , an. φ(a1, . . . , an) ∧ val(ai − p(uij , t)) ≥ m}.

This set is the set of centers of cubes that contain a solution to φ.

Theorem 3.6. Outer ring formula approximations exist for every DVR
formula φ at every level m.
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The proof of this theorem uses quantifier elimination results to eliminate
the quantifiers that bind variables ranging over the valued field. It uses
results of Presburger on quantifier elimination to eliminate the quantifiers
that range over the additive group of integers. The quantifiers that bind
variables in the residue field remain as quantifiers in the ring formula φm.

3.6.3. Scaling Factors. How is the scaling factor chosen in Equation 10 for
Euclidean outer measures? The scaling factor 1/2nm is the unique constant
that has the property that if the set A is itself a union of properly aligned
cubes (of width m′), then the outer measure of A is independent of m for
all m ≥ m′.

To find the scaling factor for DVR formulas, we work a simple example
in which the DVR formula is itself a union of cubes of width m′ (that is, its
set of solutions is stable under perturbation of the power series tails).

Example 3.7. Let φ(x1, . . . , xn) = T, a formula that is true for all values
of the free variables xi. In this case the outer ring formula approximation
is exact. Substitute polynomials p(ui·, t) for each xi and expand in terms of
mn distinct free variables uij to get

φm(uij) = T

for all input values uij . The number of solutions of φm over a finite field
Fq is qnm. If we take the motivic counting measure of φm, we find that the
variety that counts the points of φm over any finite field is the affine space
of dimension nm:

#Anm(Fq) = qnm.

The class of φm in K[L−1]⊗Q is

[Anm] = [A1]nm = Lnm.

From this one example, we see that the scaling factor for DVR formulas
must be 1/Lnm.

Definition 3.8. Let φ be a DVR formula. Let the outer measure of φ at
level m be given by

[φm]
Lnm

∈ K[L−1]⊗Q = Smot.

This formula is analogous to Formula 10 for the Euclidean outer measure
at level m. The numerator counts the number of centers of cubes that
contain a solution to the DVR formula.

Definition 3.9. Let the motivic measure (or motivic volume) of φ be given
by

lim
m→∞[φm]L−nm,

whenever that limit exists. (The limit must be taken in a completion of
Smot.)
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3.7. The universal nature of motivic measure. Just as the motivic
counting measure counts solutions to ring formulas over finite fields in a
field independent way, so the motivic measure takes the volume of a DVR
formula over locally compact fields in a field independent way.2

There is a good theory of measure on locally compact fields. This is the
Haar measure, which is translation invariant. Given a DVR formula φ and
a locally compact structure K with ring of integers OK , we can take the
volume of the set of solutions to the DVR formula

(11) vol({x ∈ On
K | φK(x)}, dx).

The measure dx can be given a canonical normalization by requiring that it
assigns volume 1 to the full set On

K .
We are now ready to state the main result on motivic measure. Like all

the other principal results in this article, the result is due to J. Denef and
F. Loeser.

Theorem 3.10. The motivic volume of φ is universal in the following sense.
Let

∑
ai[Xi]L−Ni be any representative of the motivic volume of φ as a

convergent formal sum of varieties over Q. Pick models for the varieties over
Z. After discarding finitely many primes, for any locally compact structure
of the DVR language, the K-volume of the formula is given by a convergent
sum (in R) ∑

ai#X(Fq)q−Ni ,

where Fq is the residue field of K.

This wonderful result states that the Haar measures on all locally compact
fields have an deep underlying unity. The volumes of sets can be expressed
geometrically in a way that is independent of the underlying field.

Moreover, there are effective procedures to calculate the varieties Xi and
the coefficients ai, Ni that represent the outer motivic volume at level m. If
the outer ring formula approximations φm converge at some finite level m
to the DVR formula φ, then we obtain effective procedures to calculate the
motivic volume of the formula.

4. Applications and Conclusions

What good is motivic measure? Here are a few examples.

4.1. Invariants of ring formulas. The group Smot is generated by vari-
eties VarQ. Many geometrical invariants of varieties (such as Euler charac-
teristics and Hodge polynomials) can be reformulated as invariants of the
ring Smot. This gives a novel way to attach invariants to every ring formula
φ: take a geometric invariant of [φ] ∈ Smot. In particular, ring formulas have

2It is impossible for the structure K both to be locally compact and to have a residue
field k of characteristic zero, as required by Condition 3.3. In these final paragraphs,
we allow the residue field to have positive characteristic. The residue field of a locally
compact field is always finite.
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Euler characteristics and Hodge polynomials! For example, the formula for
the nonzero squares in a field

‘∃y. (y2 = x) ∧ (x 6= 0)’

has Euler characteristic zero.

4.2. Geometry of varieties. There is a motivic change-of-variables for-
mula that is similar to the standard change of variables formula in calculus.
Using this formula, it is sometimes possible to show that two birationally
equivalent varieties have the same motivic volume. This has deep implica-
tions for the geometry of the two varieties. In particular, the motivic volume
determines the Hodge polynomial of the varieties.

This approach was followed by Kontsevich, who used a change-of-variables
calculation to show that birationally equivalent projective Calabi-Yau man-
ifolds have the same Hodge numbers [10]. Applications to orbifolds appear
in [13].

4.3. Computation of p-adic integrals. Many integrals over p-adic fields
are notoriously difficult to calculate. Motivic measure exposes the underly-
ing similarities between volumes on different p-adic fields. It gives a deci-
sion procedure to calculate p-adic integrals (at least when the data defining
the integral can be expressed as DVR formulas that can be reproduced at
some finite level m). In particular, this means that a computer can be
programmed to compute a large class of p-adic integrals.

4.4. Generating Functions. Motivic counting gives a way of counting
that is independent of the finite field. Let

Zp(t) =
∞∑

i=0

a
(p)
i ti

be a generating function, where the constants a
(p)
i are obtained by counting

solutions to a formula in some p-dependent way. (Each generating function
depends on a single prime p.) Motivic measure can often give a way of
forming a p-independent series

Zmot(t) =
∞∑

i=0

[ai]ti

taking values in S*[[t]] and specializing for almost all p to the p-dependent
series Zp(t). The motivic series collects the behavior of the various series
Zp(t) into a single series.

Denef and Loeser have studied motivic versions of Hasse-Weil series, Igusa
series, and Serre series. They have used the general motivic series to prove
that various properties of these series are independent of the prime p. See
[5].
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4.5. Concluding Remarks. This article is an exposition of a particular
version of motivic integration, called arithmetic motivic integration. Proofs
of results stated in this article can be found in [6] and [4]. Motivic integra-
tion has been developing at a break-neck pace, ever since Kontsevich gave
the first lecture on the topic in 1995. The version of motivic integration
developed in the late nineties goes by the name of geometric motivic inte-
gration. Geometric motivic integration is a coarser theory, but is sufficient
for many applications. Good introduction are [1] and [12]. Some articles on
geometric motivic integration include [3] and [7]. Another version of motivic
integration has been developed by J. Sebag for formal schemes [15]. See also
[11]. Cluckers and Loeser are in the final stages of preparation of an ultimate
version of motivic integration that subsumes both geometric and arithmetic
motivic integration [2].

We began this article by stating that motivic measure does not fit neatly
into the tradition of Hausdorff, Haar, and Lebesgue. However, a major result
states that the motivic measure specializes to the additive Haar measure on
locally compact fields (Theorem 3.10). Thus, the motivic measure is perhaps
not so peculiar after all. In fact, in many respects it is strikingly similar
to the additive Haar measure on locally compact fields. It has been my
experience when I calculate motivic volumes to lose track – mid-calculation
– of which measure is being used.
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1 Introduction

Motivated by what was, by then, well-known for surfaces, Poincaré formulated in 1905,
a conjecture stating that a closed, simply connected three-manifold is diffeomorphic to
S3. Developing tools to attack this problem formed the basis for much of the work in 3-
dimensional topology. In the 1980’s Thurston studied 3-manifolds with riemannian metrics
of constant negative curvature −1, so-called hyperbolic manifolds. He formulated general
conjectures about when a 3-manifold admits such a metric and proved various important
special cases of his conjecture. This study led him to formulate a conjecture about the
existence of homogeneous metrics for all manifolds, the so-called Geometrization Con-
jecture for 3-manifolds. This conjecture includes the Poincaré Conjecture as a very special
case. Thurston’s conjecture has two advantages over the Poincaré Conjecture:

• It applies to all 3-manifolds.

• It posits a close relationship between topology and geometry in dimension three.

The conjectural existence of an especially nice metric on the three-manifold leads to a
more analytic approach to the problem of classifying 3-manifolds. Hamilton [H1] formal-
ized one analytic approach by introducing the Ricci flow on the space of riemannian metrics
(on manifolds of any dimension). He then conjectured that starting with any metric on
a compact three-manifold, the Ricci flow should produce a one-parameter family of met-
rics converging to the nice metric as postulated by Thurston’s Geometrization Conjecture.
There are many technical issues with this program – for example, one knows that in general
the Ricci flow will develop singularities in finite time. Thus, a method for analyzing these
singularities and continuing the flow past them must be found. Furthermore, even if the
flow goes on for all time, there are many complicated issues about the nature of the limit
at time t = +∞.

Hamilton [H1, H2, H3, H4, H5] made much progress on this program and established
many crucial analytic estimates for the evolving metric and curvatures. He also showed
that in special cases the Ricci flow could indeed be used to establish the Geometrization
Conjecture. More recently, building on this work, G. Perelman, in a series of three preprints
[P2, P3, P4] has claimed to surmount all of the various technical and analytic difficulties to
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complete the program and establish the Geometrization Conjecture and hence the Poincaré
conjecture. Perelman’s arguments are quite intricate and involve many strikingly original
ideas. The mathematical community is still trying to digest the argument and ascertain
whether it is indeed a complete and correct argument. So far it is holding up under this
scrutiny. At this point one can say with assurance that Perelman has made tremendous
advances in understanding the nature of Ricci flow.

2 The Background

Let us set the stage for Hamilton’s and Perelman’s work.

2.1 Homogeneous Geometries and Geometric Structures

A homogeneous riemannian manifold (M, g) is one whose group of isometries acts tran-
sitively on the manifold. Thus, the manifold looks the same metrically at any point.
Examples of homogeneous manifolds are the round sphere Sn, Euclidean space Rn, and
hyperbolic space, Hn. A locally homogeneous manifold is one whose universal covering is
homogeneous. Said another way, a locally homogeneous manifold is a complete riemannian
manifold such that given any two points x, y in M there are neighborhoods Ux of x and Uy

of y and an isometry from Ux to Uy carrying x to y. We say that a locally homogeneous
manifold is modelled on a homogeneous manifold if every point of the locally homogeneous
manifold has a neighborhood isometric to an open set in the homogeneous model. We are
primarily concerned with locally homogeneous manifolds of finite volume.

In dimension 2 there are four models for homogeneous geometries: S2, R2, H2, and G
where G is the group R � R∗ with the natural action of R∗ on R. It turns out that there
are no finite volume locally homogeneous manifolds modelled on the fourth example, and
hence we are concerned with only the first three models. The manifolds of the first type are
the sphere and the projective plane, of the second type are the torus and the Klein bottle,
and of the third type are complete hyperbolic surfaces of finite volume which can be either
compact or non-compact.

This gives us the following well-known and classical theorem.

Theorem 2.1.1. (Uniformization in dimension 2) Let X be a compact surface. Then
X admits a locally homogeneous metric modelled on one of the constant curvature models
above. The model will be positively curved if χ(X) > 0, flat if χ(X) = 0, and negatively
curved or hyperbolic if χ(X) < 0.

2.2 Dimension 3

In dimension three, up to isomorphism, there are 8 homogeneous geometries property for
which there are finite volume locally homogeneous examples. First, we have the constant
(sectional) curvature examples:

• S3 of constant curvature +1.
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• R3, which is flat.

• H3 of constant curvature −1.

Any manifold with a geometric structure modelled on the first is a riemannian manifold
of constant positive sectional curvature. These are of the form S3/Γ where Γ is a finite
subgroup of SO(4) acting freely on S3 and include S3, RP 3, lens spaces, as well as the
quotients by the symmetry groups of the exceptional regular solids.

Any geometric structure of finite volume modelled on R3 has a flat metric, and hence
is finitely covered by a flat T 3. In particular, these manifolds are all compact.

A geometric structure modelled on H3 is a complete, finite volume hyperbolic manifold,
i.e., a riemannian manifold with all sectional curvatures equal to −1 that is complete and
of finite volume. There are infinitely many such manifolds up to diffeomorphism, both
compact and non-compact. By Mostow rigidity, a three-manifold admits at most one (up
to isomorphism) complete, finite volume hyperbolic metric. If the manifold in question
is not compact then each component of a neighborhood of infinity is diffeomorphic to
T 2×(1,∞). Geometrically the torus sections become small exponentially fast as t increases.
In particular, any finite volume hyperbolic three-manifold is diffeomorphic to the interior of
a compact three-manifold with the property that every boundary component is a two-torus.

Next we have the reducible examples:

• S2 × R.

• H2 × R.

Finite volume geometric structures based on S2 ×R are automatically compact and are
either isometric to S2 ×S1 or have this riemannian manifold as the double covering. In the
later case, the manifold is diffeomorphic to RP 3#RP 3. Finite volume geometric structures
based on H2 × R are of the form Σ × S1 where Σ is a finite area hyperbolic surface or are
finitely covered by such manifolds. In the later case, the manifold is Seifert fibered over
a hyperbolic two-dimensional orbifold of finite area. The examples Seifert fibered over a
hyperbolic base can be non-compact, but if they are then they are diffeomorphic to interiors
of compact manifolds with every boundary component being a torus.

Lastly, we have the examples where M is a connected Lie group with a left-invariant
metric. Then the group itself is embedded in the group of isometries of M which can be of
larger dimension. Three-dimensional examples of this type admitting locally homogeneous
examples of finite volume are:

• The unipotent group of strictly upper triangular three-by-three matrices N3. Locally
homogeneous manifolds modelled on this group are called nil-manifolds.

• The solvable group which is written as a semi-direct product R2�R∗ where the action
of t ∈ R∗ on R2 is diagonal and given by the matrix

(
et 0
0 e−t

)
.
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Locally homogeneous examples modelled on this group are called solv-manifolds.

• G = ˜PSL2(R), the universal covering group of PSL2(R). This manifold can also be
viewed as the universal metric covering of the unit tangent bundle to H2.

Finite volume nil-manifolds are compact and are circle bundles over T 2 with non-zero
Euler number, or are finitely covered by such circle bundles. Finite volume Solv-manifolds
fiber over S1 with T 2-fiber or have a two-sheeted covering of this type. The monodromy of
this fibration is given by an element of SL2(Z) whose eigenvalues are real and have absolute

value different from 1. Geometric structures based on ˜PSL2(R) are Seifert fibered manifolds
over hyperbolic two-dimensional orbifolds of finite area. The non-compact examples are all
diffeomorphic to interiors of compact three-manifolds all of whose boundary components
are tori.

Examination of all the possibilities shows us the following:

Corollary 2.2.1. If X3 is orientable and admits a locally homogeneous riemannian metric
of finite volume, then X is diffeomorphic to the interior of a compact three-manifold with
boundary, all of whose boundary components are tori. Furthermore, each of these tori has
fundamental group which injects into the fundamental group of X. The only geometric
structures with finite volume but non-compact examples are those modelled on H3, H2 × R

and P̃SL2(R). The manifolds of finite volume of these types are either hyperbolic three-
manifolds or are Seifert-fibered with hyperbolic two-dimensional base.

3 Topology of Three-manifolds

There are several reasons that, unlike the case in dimension two, not every compact three-
manifold can admit a homogeneous metric of finite volume. The most obvious reason
has to do with the fact that three-manifolds are not necessarily prime, whereas, with one
exception, all locally homogeneous manifolds are prime.

3.1 The prime decomposition

Definition 3.1.1. A three-manifold X is said to be prime if it is not diffeomorphic to S3

and if every S2 ⊂ X that separates X into two pieces has the property that one of these
two pieces is a three-ball. Equivalently, anytime we write X as a connected sum of two
manifolds one of them must be the three-sphere.

One of the first theorems in the topology of three-manifolds is due to Knesser:

Theorem 3.1.2. Every three-manifold admits a decomposition as a connected sum of prime
three-manifolds, called prime factors. This decomposition is unique up to the order of the
prime factors (and diffeomorphism of the factors).
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N.B. To reverse the process and reconstruct the manifold from its prime factors one
needs to work with oriented manifolds and oriented connected sums. That is to say two
non-diffeomorphic three-manifolds can have the same prime factors.

An essential S2 ⊂ X is a two-sphere that does not bound a three-ball in X. If this sphere
separates, then cutting X along it and filling in the holes with three-balls implements a
connected sum decomposition of X. If on the other hand a S2 ⊂ X does not separate, then
this procedure has the effect of removing from X a prime factor diffeomorphic to S2 × S1.

Because of the prime decomposition, all questions about the topology of three-manifolds
can be reduced to questions about prime three-manifolds. For example:

Corollary 3.1.3. Σ3 is a homotopy three-sphere if and only if all its prime factors are
homotopy three-spheres. Thus, there is a counterexample to the Poincaré conjecture if and
only if there is a prime counterexample.

By the sphere theorem, if π2(M) �= 0, then X contains an essential S2.

3.2 Thurston’s Geometrization Conjecture

Excluding manifolds with locally homogeneous metrics based on S2 ×R, all manifolds with
locally homogeneous metrics have universal coverings which are diffeomorphic either to R3

or S3. This means that every S2 in the universal cover bounds a three-ball. The same is
then true on the original manifold. Thus, the only 3-manifolds with locally homogeneous
metrics and essential S2’s are S2 × S1 and RP 3#RP 3, the latter being the only example
of a non-prime manifold admitting a locally homogeneous metric.

Thurston’s geometrization conjecture is about prime manifolds. For simplicity we re-
strict attention to orientable manifolds.

Conjecture 3.2.1. (Thurston’s Geometrization Conjecture) Let M be a compact, ori-
entable, prime three-manifold. Then there is an embedding of a disjoint union of 2-tori
and Klein bottles

∐
i T

2
i ⊂ M such that every component of the complement admits a lo-

cally homogeneous riemannian metric of finite volume.

The locally homogeneous metrics on the various components of this cutting process can be
modelled on different homogeneous manifolds.

Since we are working with orientable manifolds, the boundary of a neighborhood of a
Klein bottle is a two-torus, so that the resulting geometric pieces are interiors of compact
manifolds all of whose boundary components are tori.
N.B. There can in general be more than one such family of tori and Klein bottles up to
isotopy for which the conclusion of the geometrization conjecture holds. For example, let
Σ2 be a surface of genus 2. Then Σ2 × S1 has a geometric structure. Let T 2 ⊂ Σ2 × S1 be
the torus lying over a loop in Σ2 separating it into two once-punctured tori. Then each of
the two components of Σ2 × S1 \ T also has a geometric structure.

To obtain uniqueness one takes a family in X satisfying the conclusion with a minimal
number of components. With this condition, the family is unique up to isotopy.
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Notice by Corollary 2.2.1 each torus boundary component has fundamental group in-
jecting into each of the three-manifolds that it bounds. It follows from Van Kampen’s
theorem, that the fundamental group of each torus injects into π1(M). Such tori are called
incompressible tori. More generally, a surface of genus at least one in a three-manifold is
said to be incompressible if its fundamental group injects into the fundamental group of the
three-manifold. It follows immediately that the Klein bottles also are incompressible. Thus,
one can formulate the Geometrization Conjecture as saying that there is a decomposition
of M along incompressible tori and Klein bottles into pieces whose interiors admit finite
volume complete geometric structures.

3.3 Relation to the Poincaré Conjecture

Suppose that we have a prime homotopy three-sphere Σ that satisfies the conclusion of the
geometrization conjecture. Since π1(Σ) = {1}, Σ has no incompressible tori and hence the
decomposition of Σ referred to in Conjecture 3.2.1 must be trivial. That is to say Σ has
a locally homogeneous metric. Again since π1(Σ) is trivial, the homogeneous model for
Σ must itself be compact and Σ is diffeomorphic to the model space. The only compact
three-dimensional model is S3, and consequently, Σ is diffeomorphic to S3. Notice that
this argument (except for the very last step) applies equally well to prime 3-manifolds of
finite fundamental group. The conclusion is that the Geometrization Conjecture for such
manifolds implies that they are space-forms, i.e., are quotients of S3 by a subgroup of SO(4)
acting freely. Such groups were classified by Hopf, see [M].

4 The Ricci Flow

Let us now introduce Hamilton’s Ricci flow, cf [H1]. This is a parabolic evolution equation
a riemannian metric on a manifold. As we shall see it is a non-linear analogue of the heat
equation for the metric tensor. Its general form is

g′(t) = F (g(t)),

where a solution is a one-parameter family of metrics whose time derivative is given by a
functional F (g(t)). This functional must be of the same tensor type as the metric, i.e.,
a contravariant symmetric two-tensor and should (we hope) involve no more than second
derivatives of the metric. It must also be natural (i.e., independent of the coordinates used
to write the equation locally). There are not too many choices for such an F , and the one
Hamilton introduced is F equal to a constant multiple of the Ricci curvature on the metric.

4.1 Curvature

Recall that given a riemannian metric, there is a unique symmetric connection ∇ on the
tangent bundle of the manifold. Defining

R(X, Y ) = ∇X ◦ ∇Y −∇Y ◦ ∇X −∇[X,Y ]
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introduces the curvature operator which is a section of the second exterior power of the
cotangent bundle with values in the orthogonal endomorphisms of the tangent bundle. One
then defines the curvature tensor

Rm(X, Y, Z, W ) = −〈R(X, Y )Z, W 〉.
This is a section of the fourth exterior power of the cotangent bundle. It is skew in the
first two variables and skew in the last two variable and symmetric under interchange of
variables (1, 2) with variables (3, 4). Thus, we can view it as a symmetric tensor on the
second exterior power of the cotangent bundle. The Ricci curvature is the trace on Rm on
the middle two variables. Thus, if e1, . . . , en is an orthonormal frame at a point we have

Ric(ei, ej) =
n∑

k=1

Rm(ei, ek, ek, ej).

This is a contravariant symmetric two-tensor on the manifold. In local coordinates, its
leading term is a linear expression in the second partial derivatives of the entries of the
matrix gij describing the metric.

4.2 The Ricci Flow Equation

Hamilton introduced the Ricci Flow equation:

g′(t) = −2Ric(g(t)).

To indicate the analogy with non-linear versions of the heat equation let us write the
evolution equation for the scalar curvature R (which by definition is the trace of the Ricci
curvature). The equation is

R′(t) = ∆R(t) +
2
3
R2(t) + |Ric0(t)|2,

where Ric0 is the traceless part of the Ricci curvature. It is clear from this expression that
the minus sign in the original equation is forced on us – without it we would have non-linear
versions of the backwards heat equation which is an ill posed equation. The factor of 2 is
for convenience only.

In [H1, H3, H4] Hamilton proved:

• Short-time existence. If g0 is a smooth metric then there is some ε > 0 depending on
g0 and a solution to the Ricci flow equation defined for t ∈ [0, ε) with g(0) = g0.

• If the solution exists on the time interval [0, T ) but does not extend to any strictly
larger time interval, then there is a point x in the manifold for which curvature tensor
Rm(x, t) of the metric g(t) is unbounded as t approaches T .

In [H1] Hamilton also analyzed manifolds the Ricci flow on 3-manifolds with non-
negative Ricci.
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Theorem 4.2.1. (Hamilton) Let X3 be a compact connected three-manifold with non-
negative Ricci curvature. Then one of the following happens:

• The Ricci curvature becomes strictly positive for all t > 0 sufficiently small. In
this case, the Ricci flow develops a singularity in finite time. As the singularity
develops the diameter of the manifold is going to zero. Rescaling the evolving family
of metrics so that their diameter is 1 leads to a family of metrics converging to a
metric of constant positive curvature. In particular, the manifold is diffeomorphic to
the quotient of S3 by a free orthogonal action of a finite group.

• The manifold is finitely covered by a metric product of a compact surface of positive
curvature and S1. Again the Ricci flow develops a singularity in finite time, and
the manifold in question is diffeomorphic to S2 × S1, or is finitely covered by such a
manifold.

• The metric is flat and the evolution equation is constant. In this case, of course, the
manifold is finitely covered by T 3.

In [H2] Hamilton went on to analyze under certain extra assumptions what happens to
the metric as t 	→ ∞.

Theorem 4.2.2. (Hamilton) Suppose that the Ricci flow on a compact riemannian 3-
manifold M exists for all t ∈ [0,∞) and that the normalized curvature Rm(x, t)·t is bounded
as t 	→ ∞. Then there is a finite set of complete hyperbolic manifolds Hi of finite volume
and for each t >> 1 an embedding ϕt :

∐
i Hi → M which are converging on each compact

subset of
∐

i Hi to an isometry provided that we rescale the metric at time t by a constant
dependent on t. The tori in the Hi near infinity are incompressible tori in M and the
complement of the image of ϕt has a decomposition along incompressible tori and Klein
bottle into pieces each of which admits a locally homogeneous metric of finite volume.

Thus, under two addition hypothesis – existence of the Ricci flow for all time and
a bound on the normalized curvature – Hamilton established the conclusion of the Ge-
ometrization Conjecture.

5 Perelman’s Claims

In a sequence of three manuscripts [P2, P3, P4] posted on the math archive in the last 14
months Perelman has given arguments for a sequence of claims about the Ricci flow and its
relation to the Geometrization Conjecture. The overriding claim is that Hamilton’s program
can be completed without the extra hypotheses he imposed and hence Geometrization
Conjecture is true and can be proved using the Ricci flow, generalized to allow surgeries.

5.1 Singularities at finite time

Perelman’s first result is about the nature of the singularities that develop in finite time
under Ricci flow.
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Claim 5.1.1. Let M be a compact, orientable riemannian manifold. Then there is Q < ∞
depending only on an upper bound of the curvature of M and a lower bound for the volume
of any unit metric ball in M such that the following holds. Suppose that the Ricci flow with
these initial conditions exists for t ∈ [0, T ) but does not extend past. Then , the regions
where |Rm|(x, t) ≥ Q as t approaches T are of one of the following five types:

• a closed manifold with a metric collapsing to a point.

• a closed manifold diffeomorphic to S2 × S1, RP 3, S3 or RP 3#RP 3.

• a tube diffeomorphic to S2 × I covered by regions where the metric is very close to
a standard round metric of curvature Q′ ≥ Q on the sphere times a interval whose
length is a large multiple of 1/

√
Q′.

• a region double covered by a tube as in the previous case.

• a manifold diffeomorphic to D3 with a neighborhood of the boundary of the third type.

Furthermore, in the first case the metric when rescaled to have a fixed diameter is
converging to a metric of constant positive curvature.

Thus, in the first two cases the manifold becomes completely singular at the limiting
time and admits a metric homogeneous metric of non-negative sectional curvatures. That
is to say the manifold satisfies the conclusion of the Geometrization Conjecture. Thus, we
can assume that manifolds of these types do occur we can remove them at the singular time,
knowing that these satisfy the conclusion of the Geometrization Conjecture. We are left
to consider tubes, regions double covered by tubes and regions diffeomorphic to D3 with a
neighborhood of the boundary being a tube. We assume (for simplicity of the exposition
only) that the manifold in question admits no RP 2, then the only cases that we are left to
consider are tubes and three-balls with tubes as neighborhoods of the boundary. We call
the latter caps.

5.2 The Surgery Process

To treat singularities occurring inside of tubes and caps, Perelman introduces the notion of
Ricci flow with surgery (Hamilton had earlier introduced in [H5] a similar idea in studying
certain four-dimensional Ricci flows). The idea is to proceed to the first singular time T .
There the metric outside the tubes and caps converges to a smooth (non-complete) metric.
What is happening to the metric is that inside the tubes and caps is that one or more
singularities are developing, but these are fairly deep within the tubes and caps, far from
the boundary. To do surgery on a tube one fixes a parameter Q′ >> Q. One starts near
each end of the tube, where the metric remains smooth and the norm of the curvature is
close to Q and proceeds into the tube until one finds a long piece of tube with metric close
to the product metric of a round metric of curvature Q′ on S2 with the usual metric on an
interval [−a, a] with Q′ >> Q and a

√
Q′ >> 1. We cut this subtube open along S2 × {0}.

9



By damping the metric on S2 × [−a/2, 0] down to the product metric near the 0 end we
can then glue in a standard metric on the three-ball. We do this process near each end of
the tube and throw away the rest of the limit in between these two surgery regions.

For a cap, the process is similar except that since there is only one boundary component
there is only one surgery. Again, after doing the cutting we throw away all of the cap past
the surgery S2. As we mentioned above, if the singularity is of the other type then we
remove the entire manifold and the flow is empty from then on. (More precisely, if the
manifold is disconnected then we throw away all components that are becoming singular of
one of the other types.)

The result of this process, called Ricci flow with surgery, is to produce a closed manifold
MT at the first singular time T . Most of the manifold is the result of the time T Ricci flow
but we have gone in and removed a neighborhood of the singularities that develop at this
singular time and sewed in fixed riemannian metrics on 3-disks that we create by hand.
Having made the closed riemannian manifold MT , we use it as the initial conditions of a
Ricci flow at time t = T . In this way we continue the Ricci flow with surgery to the next
singular time. At the next singular time T1 we do exactly the same surgery process, and
then re-start the Ricci flow.

Because the process of doing a surgery removes a fixed amount of volume from the
three-manifold (how much depends on the choice of the parameters Q′ and a) and because
under Ricci flow volume increases at no more than a fixed exponential rate, it follows that
there can be only finitely many surgery times in any compact time interval, though there
they may well be infinitely surgeries as we allow time to go all the way to +∞. (There
is a technical issue here. For reasons having to do with controlling some of the important
quantities in these arguments, Perelman has to allow the surgery parameter Q′ to grow as
function of t, but always remaining finite in finite time. This means that the estimate of
how much volume is removed is a decreasing function of the surgery time. But still it is
uniformly bounded below on any compact time interval, giving an upper bound estimate on
how many surgery times can occur in this interval.) In this way Perelman creates a Ricci
flow with surgery with any compact riemannian 3-manifold as initial conditions. This flow
with surgery exists for all t ∈ [0,∞).

In this process the manifold changes topological type by the surgery process, but the
topological changes are threefold:

• (Tube Surgery) Remove a tube S2 × I from the manifold and glue in disks onto each
end.

• (Cap Surgery) Remove a three-ball from the manifold and glue in another one.

• (Collapsing Component Surgery) A component of the manifold is entirely removed.

The first type of operation is a usual topological surgery. This is how the prime decom-
position required in the Geometrization Conjecture is implemented in the Ricci flow with
surgery. (Of course, there is no reason to expect that every one of the surgeries produces
a step in the prime decomposition. Some may simply split off S3’s, but this is harmless.)
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The second type of operation is meaningful metrically since the balls in question have dif-
ferent metrics, but topologically it does nothing. The last type of operation may change the
topology significantly since entire components are removed, but, as we have seen, each of
these components satisfies the conclusion of the Geometrization Conjecture, so that we are
removing pieces of the prime decomposition of the original three-manifold that do satisfy
the conjecture and keeping those about which we have not yet learned anything.

5.3 Limits at infinity

The next step in Perelman’s argument is to analyze the limits of the Ricci flow with surgery
as t 	→ ∞. Once again in this part of the argument he is following the path initiated by
Hamilton in [H2], though his situation is more complicated for two reasons – (i) he has
Ricci flow with surgeries instead of a Ricci flow and (ii) he does not make the curvature
bound assumption as Hamilton did. In spite of these complications Perelman claims that
much of Hamilton’s analysis can be adapted. He claims:

Claim 5.3.1. • There is a finite collection of complete hyperbolic manifolds Hi of finite
volume and for all sufficiently large t an embedding

ϕt :
∐

i

Hi → Mt

which for sufficiently large t is arbitrarily close to an isometry on an arbitrarily large
compact subset of

∐
i Hi provided that we rescale the metric on Mt by

√
c/t for an

appropriate constant c independent of t.

• For all t >> 1 the boundary tori of the Hi are incompressible tori in Mt.

• For all t >> 1, the complement of the image of a sufficiently large compact subset of∐
i Hi has a metric which is arbitrarily collapsed with lower curvature bounds.

For a point x in a complete riemannian manifold define r(x) to be the supremum of
r ≥ 0 such that the Rm(y) ≥ −r2 on the metric ball Br(x) of radius r centered at x.
To say that a metric is w-collapsed at a point x with lower curvature bounds means that
Vol(Br(x)(x)) < wr3(x). To say the complement of the image of ϕt is arbitrarily collapsed
with lower curvature bounds as t 	→ ∞ means that given any w > 0 there is T (w) < ∞
such that this region is w-collapsed with lower curvature bounds for all t >> T (w).

The fact that we have pieces of the Mt isometrically approaching fixed hyperbolic pieces
implies that all the surgeries done at sufficiently large times are done in the collapsed regions
of the manifold Mt.

It follows from this claim that the for any t >> 1 we can separate Mt along incompress-
ible tori into pieces that are diffeomorphic to complete hyperbolic manifolds of finite volume
and pieces where the metric is w-collapsed with lower curvature bounds where w depends
on t and goes to zero as t goes to infinity. It remains to study the collapsed pieces. If we
can show that these satisfy the Geometrization Conjecture, then we will have completed
the proof.
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5.4 The Collapsed Regions

At this point we use no more information from the Ricci flow. The argument now turns to
results from the theory of collapsed manifolds. In our situation, we have a sequence Mtn

of 3-dimensional manifolds that are collapsing with (local) lower curvature bounds. The
idea is to pass to a limit X (of a subsequence) which is a more general metric space than
a riemannian manifold, but one in which the notion of curvature being bounded below still
makes sense. The natural category for such objects is the category of Alexandrov spaces,
see [B] and [P1]. Such spaces have a uniform dimension. In the case of limits the dimension
of the limit is most that of the manifolds in the sequence. The analysis the depends on the
dimension of the limiting Alexandrov space X. Let us first analyze the case of a sequence of
3-manifolds converges with (global) curvature bounds to an Alexandrov space X, cf [ST1,
ST2].

5.4.1 X has dimension 0

This is the case when the manifold (or one of its components) is collapsing to a point. In
this case, the manifolds in the sequence eventually have positive curvature. These satisfy
the Geometrization Conjecture.

5.4.2 X has dimension 1

In this case X is either a circle or an interval and the manifolds M locally fibers over X
with two-torus fibers. Hence, these manifolds are Solv-manifolds or are T 2 × I. Of course,
the Solv-manifolds satisfy the Geometrization Conjecture.

5.4.3 X has dimension 2

In this case the manifolds M ‘fibers’ over X with circle fibers. The quotation marks reflect
the fact that the structure is that of a Seifert fibration over a two-dimensional orbifold.

5.4.4 X has dimension 3

This case can be quite delicate since three-dimensional Alexandrov spaces are quite compli-
cated. But in this case the Ricci flow gives us more. The parabolic nature of the equation
tells us that curvature bounds imply bounds on all derivatives of curvature. Hence, in
this case the limit is actually a smooth riemannian manifold not a more general Alexan-
drov space. This manifold is automatically flat, and hence satisfies the Geometrization
Conjecture.

Now we must adapt this limiting process where we have a global lower bound to cur-
vature to our situation where the curvature lower bound is only a local one. Perelman’s
claim is that one obtains a further decomposition of the manifolds in the sequence along
incompressible tori into pieces of the above types, i.e., into pieces satisfying the conclusion
of the Geometrization Conjecture. Notice that one will never see pieces of the first type
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(dimension X is 0) as limits as t 	→ ∞ since these pieces would eventually have positive
curvature and hence disappear at finite time.

6 Concluding Remarks

Perelman’s picture of the effect of Ricci flow with surgery fits perfectly with Thurston’s
Geometrization Conjecture. The surgeries at finite time implement the connected sum
decomposition into prime factors. This decomposition is necessary before one can hope to
find homogeneous metrics. Then the decomposition along tori and Klein bottles occurs in
analyzing the limits as t 	→ ∞. The first decomposition is along incompressible tori into
inflating hyperbolic pieces and collapsing pieces. The second decomposition involves only
the collapsing pieces. It is a decomposition into collapsing pieces whose collapsing limit is
1-dimension and those whose limit is of 2-dimension. The first are either T 2-bundles over
S1 (these are components of the manifolds in the sequence) or T 2 × I. The latter separate
different pieces whose collapsing limit is 2-dimensional, these being Seifert fibered three-
manifolds that are collapsing to two-dimensional orbifolds. Thus, we get components that
are decomposed along tori into Seifert fibered pieces, components that are Seifert fibered,
and components that are Solv-manifolds. There is one other possibility which is a collapsing
component whose limit is a flat three-manifold. Since these are smoothly collapsing to a
smooth limit, the manifolds in the sequence are eventually diffeomorphic to the limit.

Notice that the hyperbolic metrics are produced by the Ricci flow, but the other locally
homogeneous metrics are imposed by hand. On the collapsing pieces we obtain topological
rather than metric conclusions from the Ricci flow and Alexandrov space theory, but these
conclusions are strong enough to allow classification of the topological types. Fortunately,
these are all known to possess locally homogeneous metrics (essentially by induction on
dimension).

The three-sphere and other manifolds of finite fundamental group are Seifert fibered.
Thus, they have collapsing metrics with two-dimensional limits. One can ask whether
these manifolds occur in the limit as t 	→ ∞. In [P3] Perelman argues that in fact this
does not happen. Any manifold whose fundamental group is a free product of finite groups
and infinite cyclic groups must disappear in finite time under the Ricci flow with surgery
process.
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