962-03-967 **Rumen D. Dimitrov** (rumen@gwu.edu), Department of Mathematics, The George Washington University, Washington, DC 20052. *Prescribed Degree Lattice Embedding into* $\mathcal{L}^*(V_{\infty})$.

Every finite distributive lattice can be embedded as a principal filter in $\mathcal{L}^*(V_\infty)$. Nerode and Smith used this result to show the undecidability of the theory of $\mathcal{L}^*(V_\infty)$. We study the relationship between $\mathcal{L}^*(V_\infty)$ and the upper semilattice of c.e. degrees by incorporating a prescribed degree structure into a principal filter of $\mathcal{L}^*(V_\infty)$.

Let $\langle T, 0 \rangle$ be a finite upgrowing tree of c.e. degrees and $\langle T1, 1 \rangle$ be a downgrowing tree reverse isomorphic to $\langle T, 0 \rangle$. Let $\langle L, 0, 1 \rangle$ be a finite distributive lattice with a substructure of meet irreducible elements isomorphic to $\langle T1, 1 \rangle$. We show that $\langle L, 0, 1 \rangle$ is embeddable in a principal filter (V) of $\mathcal{L}^*(V_{\infty})$ preserving the least and biggest elements. This embedding maps the meet irreducible elements of $\langle L, 0, 1 \rangle$ into spaces of degrees and dependence degrees corresponding to the structure $\langle T, 0 \rangle$ of c.e. degrees.

(Received September 29, 2000)