962-11-1064 Rick Kreminski* (kremin@boisdarc.tamu-commerce.edu), Department of Mathematics, Texas A&M University - Commerce, Commerce, TX 75429. Generalized Stieltjes constants γ_k for non-integral k. Preliminary report.

The Stieltjes constants γ_k are up to normalization the coefficients in the Laurent series of the Riemann ζ function, centered at s = 1: if we define $h(s) = \zeta(s) - \frac{1}{s-1}$, then h extends to an entire function and $h(s) = \sum_{k=0}^{\infty} \frac{(-1)^k \gamma_k}{k!} (s-1)^k$. Stieltjes showed that the coefficients can be given by $\gamma_k = \lim_{n \to \infty} \left(\sum_{j=1}^n \frac{\log^k j}{j^k} - \frac{\log^{k+1} n}{k+1} \right)$ for $k = 1, 2, \ldots$ We conjecture that for positive, real non-integral k this formula yields Weyl-fractional derivative values of h (evaluated at s = 1). That is, we conjecture that, up to sign, $h^{(r)}(1) = \gamma_r$ for real r > 0. We present numerical evidence for this conjecture and a related conjecture for the Riemann-Hurwitz zeta function $\zeta(s, a)$. (Received October 03, 2000)