Karl Dilcher (dilcher@mathstat.dal.ca), Department of Mathematics, Dalhousie University, Halifax, NovaScotia, Canada, and Kirk Haller*, Department of Mathematics, Dalhousie University, Halifax, NovaScotia, Canada. Multiple zeta series via box splines.
In the "language" of box splines, the Poisson summation formula is used to evaluate multiple series of the type

$$
\sum_{j \in \mathbb{Z}^{s}} \frac{1}{\left(a_{11} j_{1}+\ldots+a_{s 1} j_{s}-x_{1}\right)^{2 m_{1}} \ldots\left(a_{1 n} j_{1}+\ldots+a_{s n} j_{s}-x_{n}\right)^{2 m_{n}}}
$$

where $a_{i j} \in \mathbb{Z}$ and $m_{1}, \ldots, m_{n} \in \mathbb{N}$. The case $s=n$ is studied in greater detail, and a criterion for the factoring of the multiple series into a product of simple series is given. The case $x_{1}=\ldots=x_{n}=0$ is also studied in detail. In all cases the sum of the multiple series is the product of an algebraic number and $\pi^{2\left(m_{1}+\ldots+m_{n}\right)}$. This can be seen as a generalization of Euler's formula for the Riemann zeta function at even positive integers. (Joint work with Kirk Haller). (Received September 08, 2000)

