Paul J. Andaloro* (pandaloro@stark.kent.edu), 6000 Frank Avenue, North Canton, OH 44720. The $3 x+1$ Problem and Directed Graphs.

Define the Collatz mapping $T(x)$ on the positive odd integers as follows: $T(x)=(3 x+1) / 2$ if x is a positive odd integer, and $T(x)=x / 2$ if x is a positive even integer. The famous and notorious $3 x+1$ (Collatz) problem states that for any positive integer x, there exists some positive integer k satisfying $T^{k}(x)=1$, where T^{k} denotes k compositions of the function T. In this presentation, two equivalent formulations of the $3 x+1$ problem are given in terms of weak connectivity of directed graphs whose vertex sets are subsets of the positive odd integers. Connectivity of vertices is defined using a function induced by the Collatz mapping. Conditions under which certain vertices are connected by directed edges are also given. (Received September 15, 2000)

