A. W. Goodman* (goodmanaw@aol.com), Department of Mathematics, University of South Florida, 4202 East Fowler Avenue, PHY 114, Tampa, FL 33620. Pure Multigrades.
Two multigrades of integers A and B form a multigrade of type (D, n) if $\sum_{x \in A} x^{d}=\sum_{y \in B} y^{d}$ for each $d=1,2, \ldots, D$, and $|A|=|B|=n$. The term multiset implies that elements may be represented in either A or B. If A and B are true sets (no repititions permitted in $A \cup B$) we say that the pair (A, B) form a pure multigrade of type (D, n). Much is known about multigrades and pure multigrades, but this paper contains some new results and poses a few new open problems. Composition, the addition of two multigrades is defined in the obvious way. A pure multigrade is said to be primary if it cannot be obtained as the sum of two pure multigrades. The representation of a pure multigrade as a sum of primary multigrades is not unique. Counting the number of normalized pure primary multigrades with $n \leq N_{0}$ is an open problem. (Received September 15, 2000)

