Donald Mills* (ad3943@usma.edu), Department of Mathematical Sciences, West Point, NY 10996, and Gavin McNay (gavin.mcnay@nomura.co.uk), 20 Siddons Road, Tottenham, N17 London, England. Primitive Roots in Cubic and Higher Extensions of a Finite Field.
In 1983 S.D. Cohen proved that for any finite field $G F(q)$ and for any element θ such that $G F(q)(\theta)=G F\left(q^{2}\right)$ there exist elements $a, b \in G F(q)$ such that $a \theta+b$ is a primitive root of $G F\left(q^{2}\right)$. We consider the same question, but for higher extensions, namely cubic, quartic, and quintic extensions. We prove that for any finite field $G F(q)$ and for any element θ such that $G F(q)(\theta)=G F\left(q^{3}\right)$ there exist elements $a, b \in G F(q)$ such that $a \theta+b$ is a primitive root of $G F\left(q^{3}\right)$. We give asymptotic results for the quartic and quintic cases as well. Additionally, we address the more difficult question of whether the above problem can be resolved in the affirmative when $a=1$ and θ is a defining element of either $G F\left(q^{3}\right)$ or $G F\left(q^{4}\right)$. These primitive sums can be used as pseudo-random vector generators; we illustrate this application for $n=3$. (Received September 24, 2000)

