Let D be an integral domain with quotient field K, let $F(D)(f(D))$ be the set of nonzero (finitely generated) fractional ideals of D, and let \star be a star-operation on $F(D)$. For $A \in F(D)$ we will define $A^{\bar{\star}}=\{x \in K \mid$ there exists a $J \in F(D)$ such that $J^{\star}=D$ and $\left.x J \subseteq A\right\}$ and $A^{\star}=\left\{x \in K \mid\right.$ there exists a $J \in f(D)$ such that $J^{\star}=D$ and $x J \subseteq A\}$. Then $\bar{\star}$ and \star_{w} are star-operations on $F(D)$ that satisfy $(A \cap B)^{\star}=A^{\bar{\star}} \cap B^{\bar{\star}}$ and $(A \cap B)^{\star w}=A^{\star w} \cap B^{\star w}$. Let $\mathcal{L}_{\star}(D)=\{A \mid A$ is an integral \star-ideal $\} \cup\{0\}$. Then $\mathcal{L}_{\star}(D)$ is a complete multiplicative lattice which is modular if \star distributes over intersections. If we call a star-operation modular when its induced lattice is modular, then for a finite character star-operation \star on $F(D)$, it is of interest to know the exact relationship between the following three conditions: $(1) \star$ is additive, $(2) \star$ distributes over intersections, and $(3) \mathcal{L}_{\star}(D)$ is modular. (Received October 03, 2000)

