962-13-1200 Daniel D. Anderson (dan-anderson@uiowa.edu), Iowa City, IA 52242, and Sylvia J Forman* (syforman@sju.edu), , Philadelphia, PA 19131. Two star-operations and their induced lattices. Preliminary report.

Let D be an integral domain with quotient field K, let F(D) (f(D)) be the set of nonzero (finitely generated) fractional ideals of D, and let \star be a star-operation on F(D). For $A \in F(D)$ we will define $A^{\bar{\star}} = \{x \in K \mid \text{ there exists a} J \in F(D) \text{ such that } J^{\star} = D \text{ and } xJ \subseteq A\}$ and $A^{\star w} = \{x \in K \mid \text{ there exists a } J \in f(D) \text{ such that } J^{\star} = D \text{ and } xJ \subseteq A\}$ and $A^{\star w} = \{x \in K \mid \text{ there exists a } J \in f(D) \text{ such that } J^{\star} = D \text{ and } xJ \subseteq A\}$. Then $\bar{\star}$ and \star_w are star-operations on F(D) that satisfy $(A \cap B)^{\bar{\star}} = A^{\bar{\star}} \cap B^{\bar{\star}}$ and $(A \cap B)^{\star w} = A^{\star w} \cap B^{\star w}$. Let $\mathcal{L}_{\star}(D) = \{A \mid A \text{ is an integral } \star \text{-ideal}\} \cup \{0\}$. Then $\mathcal{L}_{\star}(D)$ is a complete multiplicative lattice which is modular if \star distributes over intersections. If we call a star-operation modular when its induced lattice is modular, then for a finite character star-operation \star on F(D), it is of interest to know the exact relationship between the following three conditions: (1) \star is additive, (2) \star distributes over intersections, and (3) $\mathcal{L}_{\star}(D)$ is modular. (Received October 03, 2000)