Christopher J. Morgan* (cmorgan@ms.uky.edu), Department of Mathematics, 902 Patterson Office Tower, Lexington, KY 40506-0027. Density of a Class of Polynomials in the Class S_{H}^{0} of Sense-Preserving Harmonic Functions, Preliminary Report. Preliminary report.
In the paper Harmonic Univalent Polynomials, Complex Variables, Vol. 35, pp. 93-107, T.J. Suffridge introduced a class of sense-preserving harmonic polynomials defined on the unit disk in the complex plane. These polynomials may be written in the form $f=\bar{g}+h$, where g and h are polynomials in z that satisfy $g(0)=h(0)=g^{\prime}(0)=0$. Moreover, for a polynomial f of degree n in this class, f may be expressed in terms of g and h as follows: $h^{\prime}(z)=Q(z)+e^{i \theta}(1-t) z \hat{Q}(z)$, $g^{\prime}(z)=e^{i \beta} t z \hat{Q}(z)$, where θ, β, and t are real, $0 \leq t \leq 1, Q(z)$ is a polynomial in z of degree less than or equal to $n-2$ satisfying $Q(0)=1$, and where $\hat{Q}(z)=z^{n-2} \overline{Q(1 / \bar{z})}$. We will show that polynomials of this form are dense in the class S_{H}^{0} of sense-preserving harmonic functions. (Received September 14, 2000)

