962-30-438

Christopher J. Morgan^{*} (cmorgan@ms.uky.edu), Department of Mathematics, 902 Patterson Office Tower, Lexington, KY 40506-0027. Density of a Class of Polynomials in the Class S_H^0 of Sense-Preserving Harmonic Functions, Preliminary Report. Preliminary report.

In the paper Harmonic Univalent Polynomials, Complex Variables, Vol. 35, pp. 93–107, T.J. Suffridge introduced a class of sense-preserving harmonic polynomials defined on the unit disk in the complex plane. These polynomials may be written in the form $f = \overline{g} + h$, where g and h are polynomials in z that satisfy g(0) = h(0) = g'(0) = 0. Moreover, for a polynomial f of degree n in this class, f may be expressed in terms of g and h as follows: $h'(z) = Q(z) + e^{i\theta}(1-t)z\hat{Q}(z)$, $g'(z) = e^{i\beta}tz\hat{Q}(z)$, where θ, β , and t are real, $0 \le t \le 1$, Q(z) is a polynomial in z of degree less than or equal to n-2satisfying Q(0) = 1, and where $\hat{Q}(z) = z^{n-2}\overline{Q(1/\overline{z})}$. We will show that polynomials of this form are dense in the class S_H^0 of sense-preserving harmonic functions. (Received September 14, 2000)