962-30-749 Kazuya Tohge (tohge@t.kanazawa-u.ac.jp), Faculty of Technology, Kanazawa university, 2-40-20 Kodatsuno, Kanazawa, 920-8667, JAPAN, and. Value distribution of meromorphic solutions to the functional equation $f^{n}+g^{n}+h^{n} \equiv 1$ when $n \leq 6$
By applying Cartan's second main theorem of Nevanlinna theory for hyperplanes in complex projective space, Hayman showed that for $n \geq 9$, there do not exist three nonconstant meromorphic functions f, g, and h that satisfy $f^{n}+g^{n}+h^{n} \equiv 1$. Green and Toda also proved the similar results. For $n \leq 6$, Green, Gross $(n=4)$, Gundersen $(n=5,6)$ and others $(n \leq 4)$ gave examples of meromorphic solutions to this functional equation. Some of them, e.g. Green's solution for $n=4$, show that Cartan's inequality is sharp in a sense, but some do not, which is quite similar to the relationship between Nevanlinna's inequality and Baker, Gross and Iyer's solutions of the equation $f^{n}+g^{n} \equiv 1$ when $n \leq 3$.

In this talk we will observe the value distribution of these known meromorphic solutions of $f^{n}+g^{n}+h^{n} \equiv 1$ and present other examples to discuss the sharpness of Cartan's estimate, especially when $n=5$. Some related topics will be discussed also. (Received September 25, 2000)

