962-32-714 Jerry R Muir, Jr.* (jerry.muir@rose-hulman.edu), Department of Mathematics, Rose-Hulman Institute of Technology, 5500 Wabash Ave., Terre Haute, IN 47803, and Ted J
Suffridge (ted@ms.uky.edu), Department of Mathematics, 713 Patterson Office Tower, University Of Kentucky, Lexington, KY 40506. Unbounded Convex Mappings of the Ball in Cⁿ.

We consider holomorphic functions $F : B \to \mathbb{C}^n$ (*B* is the open unit ball of \mathbb{C}^n) that are univalent, normalized (F(0) = 0, DF(0) = I), and are such that $\Omega = F(B)$ is an unbounded convex domain. In particular, suppose that Ω contains a line $\{tu : t \in \mathbb{R}\}$ for some $u \in \mathbb{C}^n$, $u \neq 0$. We will show that under certain reasonable conditions, up to composition with a holomorphic automorphism of *B*, *F* is an extension to *B* of the strip mapping in the open unit disk of \mathbb{C} . (Received September 22, 2000)