962-35-1037 **Canan Celik*** (celikcan@math.msu.edu), Department of Mathematics, Michigan State University, East Lansing, MI 48824. No Local L¹ Solution for a Nonlinear Heat Equation. Preliminary report.

In this paper we consider the nonlinear heat equation $u_t = u_{xx} + |u|^{p-1}u$ on $\mathbb{R}^+ \times (-1, 1)$ with vanishing dirichlet boundary condition and the initial condition $u(x,0) = u_0(x)$ in $L^1(-1,1)$, where p > 1. It has been well known for p < 3 that this problem has a local solution for any initial condition $u_0 \in L^1(-1,1)$. But the existence and uniqueness of the local solution in L^1 for the critical exponent p = 3 was widely open and this work is to answer to this open problem. By using a delicate dilation argument, we first prove the finite time blow-up of the solution for a particular explicit initial data u_0 for the critical exponent p = 3, which is been used to construct a class of initial data $u_0 \in L^1(-1,1)$ for which there is no local L^1 solution. We also establish the global existence in $L^{1+\epsilon}$ with $||u_0||_{1+\epsilon}$ sufficiently small and $\epsilon > 0$ for the critical exponent p = 3. (Received October 03, 2000)