962-35-701 C. Y. Chan (chan@louisiana.edu), Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, and Nadejda E. Dyakevich* (ned4821@louisiana.edu), Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010. Complete blow-up of solutions for quasilinear parabolic problems.

Let $T \leq \infty$, D be a bounded domain in \mathbb{R}^n with boundary ∂D , x_0 be an arbitrarily fixed point in D, $\Omega = D \times (0, T)$, and $S = \partial D \times (0, T)$. This article considers the following quasilinear parabolic initial-boundary value problem:

 $u_t = \Delta g(u) + f(u(x_0, t)) \text{ in } \Omega,$ $u(x, 0) = u_0(x) \ge 0 \text{ in } \overline{D},$ u(x, t) = 0 on S.

The complete blow-up of u in a finite time is studied. (Received September 22, 2000)