962-35-99

Herbert C Kranzer* (kranzer@panther.adelphi.edu), Prof. Herbert C. Kranzer, Dept. of Mathematics and Computer Science, Adelphi University, Garden City, NY 11530. A Strictly Hyperbolic, Genuinely Nonlinear 2x2 System of Conservation Laws which is L¹-unstable.

The system

$$u_t + (u^2 - v)_x = 0,$$

$$v_t + (\frac{1}{3}u^3 - u)_x = 0,$$
(1)

with characteristic velocities $\lambda_{\pm}(u) = u \pm 1$, is strictly hyperbolic and genuinely nonlinear, but there is no single global separating velocity Λ such that $\lambda_{-}(u_1) < \Lambda < \lambda_{+}(u_2)$ for all u_1, u_2 . The general solution of the Riemann problem for (??) incorporates a singular shock S_{δ} with an unbounded profile [Keyfitz-Kranzer, J. Diff. Eq. **118** (1995), 420-451]. We investigate the L^1 stability of the Cauchy problem for this system. For two solutions $U_1 = (u_1, v_1)$ and $U_2 = (u_2, v_2)$ whose Cauchy data are close to the Riemann data for S_{δ} , we find that $||U_1 - U_2||_{L_1}$ can grow without bound as $t \to +\infty$. (Received August 01, 2000)