962-B1-773 Thomas E. Price* (teprice@uakron.edu), Department of Mathematics, The University of Akron, Akron, OH 44325-4002, and Adam E. Roberts (aer@uakron.edu). Fractal Tilings with Radial Symmetry. Preliminary report.
Let $m>1$ be an integer and let $\left\{v_{j}\right\}_{j=1}^{m}$ denote the collection of two-dimensional vectors composed of the $m-1$ roots of unity and the zero vector. Then a fractal attractor can be generated using the iterated function system

$$
f_{j}(z)=v_{j}+\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad j=1,2, \ldots, m
$$

where $\alpha^{2}+\beta^{2}=1 / m, \alpha, \beta \in \mathbb{R}$. This talk will address the problem of determining conditions on α, β and m so that these attractors generate tilings of the plane. (Received September 26, 2000)

