William P Wardlaw* (wpw@usna.edu), U. S. Naval Academy, Mathematics Department, 572-C Holloway Road, Annapolis, MD 21402. What is the Rank of a Matrix over a Commutative Ring? Preliminary report.
In an earlier publication, the author defined the spanning rank of an $m \mathrm{xn}$ matrix A over a commutative ring R to be the smallest positive integer r such that there is an $m \times r$ matrix C and an $r x n$ matrix D, both over R, such that $A=C D$. This rank is discussed, and then compared with several other definitions of ranks, all of which give the standard value of rank when R is a field, but which can give different values when R is not a field. Some applications of the different rank definitions are mentioned. (Received September 14, 2000)

