Meeting: 1003, Atlanta, Georgia, AWMWKSHOP, AWM Workshop

1003-00-1291 Kathrin Bringmann* (bringman@math.wisc.edu), Department of Mathematics, Van Vleck Hall, University of Wisconsin, Madison, WI 53706. Lifting maps from a vector space of Jacobi cusp forms to a subspace of certain elliptic modular forms.

We define for a Jacobi cusp form ϕ the lifting map $S_{D_0,r_0}(\phi)(w)$ as a Fourier expansion, where the Fourier coefficients are certain sums of special values of the Fourier coefficients of ϕ . Moreover we define for a function $f \in S_k(\frac{1}{2}\det(2m))^-$, i.e., the subspace of cusp forms with respect to $\Gamma_0(\frac{1}{2}\det(2m))$ that have eigenvalue -1 under the Fricke involution $W_{\frac{1}{2}\det(2m)}$, the lifting map $S_{D_0,r_0}^*(\tau, z)$ as a Fourier expansion, where the Fourier coefficients are certain cycle integrals. Our aim is to prove (under certain restrictions) the following Theorem. **Theorem.** If ϕ is in $J_{k+\frac{g+1}{2},m}^{cusp}$, then the function $S_{D_0,r_0}(\phi)(w)$ is an element of $S_{2k}(\frac{1}{2}\det(2m))^-$. If $f \in S_{2k}(\frac{1}{2}\det(2m))^-$ the function $S_{D_0,r_0}^*(f)(\tau,z)$ is in $J_{k+\frac{g+1}{2},m}^{cusp}$. The maps $S_{D_0,r_0}: J_{k+\frac{g+1}{2},m}^{cusp} \to S_{2k}(\frac{1}{2}\det(2m))^-$ and $S_{D_0,r_0}^*: S_{2k}(\frac{1}{2}\det(2m))^- \to J_{k+\frac{g+1}{2},m}^{cusp}$ are adjoint maps with respect to the Petersson scalar products.

(Received October 04, 2004)