Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-05-1255
Jack W Huizenga* (huizenga@uchicago.edu), Department of Mathematics, University of
Chicago, 5734 S. University Avenue, Chicago, IL 60637. Chromatic capacity and graph operations.
The chromatic capacity $\chi_{\text {cap }}(G)$ of a graph G is the largest integer k for which there exists an edge coloring $c: E(G) \rightarrow$ $\{1, \ldots, k\}$ such that for any vertex coloring $b: V(G) \rightarrow\{1, \ldots, k\}$ there is an edge $v w \in E(G)$ with $b(v)=b(w)=c(v w)$. We prove that there is an unbounded function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\chi_{\text {cap }}(G) \geq f(\chi(G))$ for almost every graph G, where χ denotes the chromatic number. We show that for any positive integers n and k with $k \leq n / 2$ there exists a graph G with $\chi(G)=n$ and $\chi_{\text {cap }}(G)=n-k$, extending a result of Greene. We obtain bounds on $\chi_{\text {cap }}\left(K_{n}^{r}\right)$ that are tight as $r \rightarrow \infty$, where K_{n}^{r} is the complete n-partite graph with r vertices in each part. Finally, for any positive integers p and q we construct a graph G with $\chi_{\text {cap }}(G)+1=\chi(G)=p$ that contains no odd cycles of length less than q. (Received October 04, 2004)

