Meeting: 1003, Atlanta, Georgia, SS 24A, AMS Special Session on Design Theory and Graph Theory, I

1003-05-418 John Roger Schmitt* (jrschmi@emory.edu), Dept. of Mathematics \& Computer Science,
Emory University, 400 Dowman Drive, Atlanta, GA 30322, and Ronald J Gould and Michael
Ferrara. Potentially K_{s}^{t}-graphic degree sequences.
We consider a variation of the classical Turán-type extremal problem as introduced by Erdős et.al. Let π be an n-element graphical sequence, and $\sigma(\pi)$ be the sum of the terms in π, that is the degree sum. Let G be a graph. The problem is to determine the smallest even integer m such that any n-term graphical sequence π having $\sigma(\pi) \geq m$ has a realization containing G as a subgraph. Denote this value m by $\sigma(G, n)$. Here we determine a lower bound for $\sigma\left(K_{s}^{t}, n\right)$ - where K_{s}^{t} denotes the complete multipartite graph with t partite sets each of size s, and prove equality in the case $s=2$. We also provide a graph theoretic proof of the value of $\sigma\left(K^{t}, n\right)$. (Received September 14, 2004)

