Meeting: 1003, Atlanta, Georgia, SS 24A, AMS Special Session on Design Theory and Graph Theory, I

1003-05-42 Anthony J.W. Hilton* (a.j.w.hilton@reading.ac.uk), Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220, Reading, England. ($r, r+1$)-factorizations of ($d, d+1$)-graphs.
A $(d, d+1)$ - graph is a graph whose vertices all have degrees d or $d+1$. A decomposition of a graph into edge-disjoint ($r, r+1$)-factors (i.e. spanning ($r, r+1$)-subgraphs) is called an $(r, r+1)$-factorization.

We show that if $r, d, x \in \mathbb{Z}^{+}$and $x \in\left(\frac{d+1}{r+1}, \frac{d}{r}\right)$ then any simple $(d, d+1)$-graph has an $(r, r+1)$-factorization into x $(r, r+1)$-factors, and that if

$$
x \notin\left[\frac{d+1}{r+1}, \frac{d}{r}\right]
$$

then no simple $(d, d+1)$-graph has an $(r, r+1)$-factorization into $x(r, r+1)$-factors.
Let $\psi(r)$ be the least integer such that, if $d \geq \psi(r)$, then any d-regular simple graph has an $(r, r+1)$-factorization. We show that

$$
\psi(d)= \begin{cases}r(r+1) & \text { when } r \text { is even } \\ r(r+1)+1 & \text { when } r \text { is odd }\end{cases}
$$

Multigraphs and pseudographs are also considered. Results for multigraphs, like the ones above, may be true, but have yet to be proved. (Received June 29, 2004)

