Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-05-471 Michael J. Fisher (michael_fisher@csufresno.edu), Mathematics Department, California State University, Fresno, 5245 N. Backer M/S PB108, Fresno, CA 93740-8001, and Victor
Kostyuk and Darren A. Narayan* (dansma@rit.edu), Department of Mathematics and Statistics, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623-5603. Ordered Achromatic Numbers of Paths, Cycles, and Trees.
Given a graph G, a coloring $f: V(G) \rightarrow\{1,2, \ldots, k\}$ is called an ordered k-coloring (or k-ranking) of G if $f(u)=$ $f(v)$ implies that every $u-v$ path contains a vertex w such that $f(w)>f(u)$. An ordered k-coloring is minimal if decreasing any label larger than 1 results in a labeling that is not an ordered k-coloring. The ordered achromatic number of a graph (or arank number) of G is the maximum k for which G has a minimal ordered k-coloring. We investigate properties of minimal ordered k-colorings for paths, cycles, and trees. In particular we determine new results involving ordered achromatic numbers and explore necessary conditions for deciding whether a given ordered k-coloring is minimal. (Received September 15, 2004)

