Meeting: 1003, Atlanta, Georgia, SS 24A, AMS Special Session on Design Theory and Graph Theory, I

1003-05-472 Nick Cavenagh and Abdollah Khodkar* (akhodkar@westga.edu), Department of
Mathematics, State University of West Georgia, Carrollton, GA 30117, and Saad El-Zanati and
Charles Vanden Eynden. On a generalization of the Oberwolfach Problem.
One of the best-known problems on factorizations into cycles is the Oberwolfach problem, which was first formulated by Ringel and concerns possible seating arrangements as discussed at a graph theory conference in Oberwolfach, Germany in 1967. The question is if it is possible to seat an odd number m of people at t round tables at which there are $a_{1}, a_{2}, \ldots, a_{t}$ seats (with $a_{1}+a_{2}+\ldots+a_{t}=m$ and $\left.a_{i} \geq 3\right)$ on $(m-1) / 2$ days so that each person sits next to every other person exactly once. Thus the Oberwolfach problem asks for a 2-factorization of the complete graph K_{m} in which each 2-factor consists of cycles of lengths $a_{1}, a_{2}, \ldots, a_{t}$.

In this talk, we study the case $m=p^{n}$, where p is an odd prime. Clearly, if $K_{p^{n}}$ has a C_{t}-factor, then t must also be a power of p, say $t=p^{k}$ with $1 \leq k \leq n$. In particular, we show that if $e_{1}, e_{2}, \ldots, e_{n}$ is a sequence of nonnegative integers such that the first non-zero term is not one and $\sum_{i=1}^{n} e_{i}=\left(p^{n}-1\right) / 2$, then the complete graph $K_{p^{n}}$ can be decomposed

