Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-05-583 Michael J Ferrara* (mferrar@emory.edu), Ronald J. Gould, Gerard R. Tansey and Thor Whalen. On H-Imitations.

Let H be a graph on k vertices and let G be a graph on a sufficiently large number of vertices with S some k-element subset of V(G). If there is a one-to-one map $f: S \to V(H)$ such that whenever uv is an edge of H there is an f(u) - f(v)path in $G \setminus S$ then we call S together with these paths an H-imitation on S in G. We will give conditions on the minimum degree of G that ensure for any choice of S, G has an H-imitation on S.

If \mathcal{I} is an *H*-imitation in *G*, then the *repetition number* of some vertex *x* in $G \setminus S$, denoted r(x) is one less than the number of times *x* appears in a path in \mathcal{I} . We then define the *vertex-repetition number* of \mathcal{I} , denoted $v(\mathcal{I})$, to be

$$\sum_{x \in V(\mathcal{I}) \setminus S} r(x)$$

For any $\lambda \leq \eta(H) - k + 1$, where $\eta(H)$ depends on the structure of H, we will give minimum degree conditions on G that ensure for any choice of S, G has an H-imitation on S having vertex-repetition number at most λ . (Received September 23, 2004)