Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-05-583 Michael J Ferrara* (mferrar@emory.edu), Ronald J. Gould, Gerard R. Tansey and Thor Whalen. On H-Imitations.
Let H be a graph on k vertices and let G be a graph on a sufficiently large number of vertices with S some k-element subset of $V(G)$. If there is a one-to-one map $f: S \rightarrow V(H)$ such that whenever $u v$ is an edge of H there is an $f(u)-f(v)$ path in $G \backslash S$ then we call S together with these paths an H-imitation on S in G. We will give conditions on the minimum degree of G that ensure for any choice of S, G has an H-imitation on S.

If \mathcal{I} is an H-imitation in G, then the repetition number of some vertex x in $G \backslash S$, denoted $r(x)$ is one less than the number of times x appears in a path in \mathcal{I}. We then define the vertex-repetition number of \mathcal{I}, denoted $v(\mathcal{I})$, to be

$$
\sum_{x \in V(\mathcal{I}) \backslash S} r(x) .
$$

For any $\lambda \leq \eta(H)-k+1$, where $\eta(H)$ depends on the structure of H, we will give minimum degree conditions on G that ensure for any choice of S, G has an H-imitation on S having vertex-repetition number at most λ. (Received September 23, 2004)

