Meeting: 1003, Atlanta, Georgia, SS 24A, AMS Special Session on Design Theory and Graph Theory, I

1003-05-606
Chris A Rodger* (rodgec1@auburn.edu), Dept of Mathematics and Statistics, 221 Parker Hall, Auburn University, AL 36849-5310, and Elizabeth Billington. Resolvable 4-cycle group divisible designs with two associate classes.
Let $K\left(p, a ; \lambda_{1}, \lambda_{2}\right)$ denote the graph formed from p vertex disjoint copies of the multigraph $\lambda_{1} K_{a}$, in which each pair of vertices is joined by exactly λ_{1} edges, by joining each pair of vertices in different copies of $\lambda_{1} K_{a}$ with exactly λ_{2} edges.

An H-decomposition of a graph G is an ordered pair (V, C), where V is the vertex set of G and C is a set of copies of H such that each edge in G occurs in exactly one graph in C. In an H-decomposition (V, C) of a graph G, a parallel class is a subset S of C such that each vertex in V occurs in exactly one copy of H in $S .(V, C)$ is said to be resolvable if C can be partitioned into parallel classes.

In this talk the existence problem for resolvable C_{4}-decompositions of $K\left(p, a ; \lambda_{1}, \lambda_{2}\right)$, or of $K\left(p, a ; \lambda_{1}, \lambda_{2}\right)$ minus a 1 -factor, when a is even is discussed. (Received September 24, 2004)

