Meeting: 1003, Atlanta, Georgia, SS 14A, AMS Special Session on D-Modules, I

1003-11-1204Alan C. Adolphson* (adolphs@math.okstate.edu), Department of Mathematics, Oklahoma
State University, Stillwater, OK 74078, and Steven Sperber, School of Mathematics, University
of Minnesota, Minneapolis, MN 55455. Hodge polygons for exponential sums. Preliminary report.

Let X be a projective variety over a finite field \mathbf{F}_q , f an \mathbf{F}_q -rational function on X, and Ψ a nontrivial additive character on \mathbf{F}_q . Associated to this data is an L-function L(t), which is rational by theorems of Dwork and Grothendieck. In nice situations, L(t) or its reciprocal is a polynomial, all of whose reciprocal roots have absolute value $q^{(\dim X)/2}$. (This was proved by N. Katz, building on fundamental work of P. Deligne.) It is an open problem to find good p-adic estimates for the zeros and poles of L(t), or, equivalently, to find the p-adic Newton polygon of L(t). We discuss the few known results on this question and introduce some new ideas to attempt to the them together. (Received October 04, 2004)