Meeting: 1003, Atlanta, Georgia, AMS Contributed Paper Session

1003-11-130 Douglas E Iannucci* (diannuc@uvi.edu), Division of Science and Mathematics, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, WA 00802, and Alexia S Mintos (alexiamintos@hotmail.com), Division of Science and Mathematics, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802. On consecutive integers with equal sums of distinct prime divisors. Preliminary report.
For a positive integer n, let $P(n)$ denote the sum of the distinct prime divisors of n. Thus $P(1)=0$, and, if n has the unique prime factorization $n=\prod_{i=1}^{k} p_{1}^{a_{1}}$, then $P(n)=\sum_{i=1}^{k} p_{i}$. We call the pair $(n, n+1)$ of consecutive integers a Ruth-Aaron pair of the second kind if $P(n)=P(n+1)$. In this instance, the number of prime components of n, and that of $n+1$, are of opposite parity. We show that $(5,6),(24,25)$, and $(49,50)$ are the only such pairs whose members contain one or two components. We also investigate pairs of the form ($4 p q, r s$) where p, q, r, and s are distinct primes. (Received August 10, 2004)

