Meeting: 1003, Atlanta, Georgia, SS 32A, AMS Special Session on Arithmetic Algebraic Geometry, I

1003-11-183 **Robert L. Benedetto*** (rlb@cs.amherst.edu), Department of Mathematics and Comp Sci, Amherst College, Amherst, MA 01002. *Towards Uniform Boundedness for Quadratic Polynomial Dynamics.*

Let K be a number field, and let $\phi \in K(z)$ be a rational function. Write ϕ^n for the *n*-fold composition $\phi \circ \phi \circ \cdots \circ \phi$. We consider the action of ϕ^n on the projective line $\mathbb{P}^1(K)$. A point $x \in \mathbb{P}^1(K)$ is said to be preperiodic if $\phi^m(x) = \phi^n(x)$ for some $n > m \ge 0$.

In 1950, Northcott proved that for any fixed ϕ of degree at least two, there are only finitely many K-rational preperiodic points. In 1994, Morton and Silverman formulated a broad conjecture stating that the number of K-rational preperiodic points is bounded by a constant depending only on $[K : \mathbb{Q}]$ and the degree of ϕ .

In this talk, we will present evidence supporting the conjecture, and we will describe some recent non-uniform but improved bounds for the number of rational preperiodic points of a quadratic polynomial over \mathbb{Q} . (Received August 20, 2004)