Meeting: 1003, Atlanta, Georgia, SS 16A, AMS Special Session on Inverse Spectral Geometry, I

1003-11-595 Machiel van Frankenhuijsen* (vanframa@uvsc.edu), Utah Valley State College, Department of Mathematics, Orem, UT 84058-5999. Arithmetic progressions of zeros of the Riemann zeta function.
We analyze the spectral problem for the so-called 'truncated Cantor strings'. These strings have finitely many complex dimensions, located at $D+i n \mathbf{p}, 0<|n|<N$. For $D=1 / 2$, the inverse spectral problem can be solved if $N>13 \mathbf{p}$, and for $D>1 / 2$, this problem can already be solved for $N>C(\log \mathbf{p}) \mathbf{p}^{1 / D-1}$. We thus obtain corresponding theorems about the maximal number of zeros of $\zeta(s)$ in the critical strip in vertical arithmetic progression. (Received September 23, 2004)

