Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-11-838 **Curtis N Cooper*** (cnc8851@cmsu2.cmsu.edu), Dept. of Math. and Comp. Sci., Central Missouri State University, Warrensburg, MO 64093. *Factorizations of Some Periodic Linear Recurrence Systems.*

Let P and Q be relatively prime integers. The Lucas sequences are defined by $U_0 = 0$, $U_1 = 1$, $V_0 = 2$, $V_1 = P$, and

$$U_n = PU_{n-1} - QU_{n-2}$$
 and $V_n = PV_{n-1} - QV_{n-2}$

where $n \geq 2$. We will show that

$$U_n = \prod_{k=1}^{n-1} \left(P - 2\sqrt{Q} \cos \frac{k\pi}{n} \right), \quad n \ge 2.$$

and

$$V_n = \prod_{k=1}^n \left(P - 2\sqrt{Q} \cos \frac{(k - \frac{1}{2})\pi}{n} \right), \quad n \ge 1.$$

Next, let a_1 , a_2 , b_1 , and b_2 be real numbers. The period two second order linear recurrence system is defined to be the sequence $f_0 = 1$, $f_1 = a_1$, and

$$f_{2n} = a_2 f_{2n-1} + b_1 f_{2n-2}$$

and $f_{2n+1} = a_1 f_{2n} + b_2 f_{2n-1}$

for $n \ge 1$. Also, let $D = a_1a_2 + b_1 + b_2$ and assume $D^2 - 4b_1b_2 \ne 0$. We will show that

$$f_{2n+1} = a_1 \prod_{k=1}^n \left(\frac{a_1 + a_2}{2} \pm \sqrt{\left(\frac{a_1 - a_2}{2}\right)^2 - b_1 - b_2 + 2\sqrt{b_1 b_2} \cos\frac{k\pi}{n+1}} \right)$$

for $n \ge 0$.

The proofs will depend on finding the eigenvalues and eigenvectors of certain tridiagonal matrices. (Received September 30, 2004)