Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-11-838
Curtis N Cooper* (cnc8851@cmsu2.cmsu.edu), Dept. of Math. and Comp. Sci., Central Missouri State University, Warrensburg, MO 64093. Factorizations of Some Periodic Linear Recurrence Systems.
Let P and Q be relatively prime integers. The Lucas sequences are defined by $U_{0}=0, U_{1}=1, V_{0}=2, V_{1}=P$, and

$$
U_{n}=P U_{n-1}-Q U_{n-2} \quad \text { and } \quad V_{n}=P V_{n-1}-Q V_{n-2},
$$

where $n \geq 2$. We will show that

$$
U_{n}=\prod_{k=1}^{n-1}\left(P-2 \sqrt{Q} \cos \frac{k \pi}{n}\right), \quad n \geq 2
$$

and

$$
V_{n}=\prod_{k=1}^{n}\left(P-2 \sqrt{Q} \cos \frac{\left(k-\frac{1}{2}\right) \pi}{n}\right), \quad n \geq 1
$$

Next, let a_{1}, a_{2}, b_{1}, and b_{2} be real numbers. The period two second order linear recurrence system is defined to be the sequence $f_{0}=1, f_{1}=a_{1}$, and

$$
\begin{aligned}
f_{2 n} & =a_{2} f_{2 n-1}+b_{1} f_{2 n-2} \\
\text { and } f_{2 n+1} & =a_{1} f_{2 n}+b_{2} f_{2 n-1}
\end{aligned}
$$

for $n \geq 1$. Also, let $D=a_{1} a_{2}+b_{1}+b_{2}$ and assume $D^{2}-4 b_{1} b_{2} \neq 0$. We will show that

$$
f_{2 n+1}=a_{1} \prod_{k=1}^{n}\left(\frac{a_{1}+a_{2}}{2} \pm \sqrt{\left(\frac{a_{1}-a_{2}}{2}\right)^{2}-b_{1}-b_{2}+2 \sqrt{b_{1} b_{2}} \cos \frac{k \pi}{n+1}}\right)
$$

for $n \geq 0$.
The proofs will depend on finding the eigenvalues and eigenvectors of certain tridiagonal matrices. (Received September 30, 2004)

