Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-11-869 Judith Canner* (jc3429@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, Lenny Jones (lkjone@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, and Joseph Purdom (jp9506@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257. Sequences of Reducible $\{0,1\}$-Polynomials Modulo a Prime. Preliminary report.
Let $f(x)$ be a $\{0,1\}$-polynomial, let $k \geq 1$ be an integer and let p be a prime. Define a sequence of $\{0,1\}$-polynomials by: $f_{1}:=f(x)$ and, for $i \geq 2, f_{i}:=f_{i-1}+x^{k n}$, if $k n$ is the smallest multiple of k larger than d_{i-1}, the degree of f_{i-1}, such that $f_{i-1}+x^{k n}$ is reducible modulo p. Let $D=\left\{d_{i} \mid i=1,2,3, \ldots\right\}$ and let $M=\left\{d_{1}+1, d_{1}+2, \ldots\right\}-D$. We investigate conditions on (f, k, p) which determine whether M is empty, finite or infinite. In addition, we investigate conditions on (f, k, p) which guarantee, in the situation when M is finite, that f_{i} has a zero $\bmod p$ for all i with $d_{i}>m$, where m is the largest element of M. (Received September 30, 2004)

