Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

 Judith Canner* (jc3429@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, Lenny Jones (lkjone@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, and Joseph Purdom (jp9506@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257. Sequences of Reducible {0,1}-Polynomials Modulo a Prime. Preliminary report.

Let f(x) be a $\{0,1\}$ -polynomial, let $k \ge 1$ be an integer and let p be a prime. Define a sequence of $\{0,1\}$ -polynomials by: $f_1 := f(x)$ and, for $i \ge 2$, $f_i := f_{i-1} + x^{kn}$, if kn is the smallest multiple of k larger than d_{i-1} , the degree of f_{i-1} , such that $f_{i-1} + x^{kn}$ is reducible modulo p. Let $D = \{d_i \mid i = 1, 2, 3, ...\}$ and let $M = \{d_1 + 1, d_1 + 2, ...\} - D$. We investigate conditions on (f, k, p) which determine whether M is empty, finite or infinite. In addition, we investigate conditions on (f, k, p) which guarantee, in the situation when M is finite, that f_i has a zero mod p for all i with $d_i > m$, where m is the largest element of M. (Received September 30, 2004)