Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-11-930
Sungkon Chang* (schang@math.uga.edu), 2360 W. Broad St., Q-5, Athens, GA 30606. On the rank of quadratic twists of an elliptic curve.
Let K be the field of rational numbers, or a number field of odd class number without real embeddings, or the function field $\mathbb{F}_{\ell}(t)$ where ℓ is an odd prime. Let E / K be an elliptic curve, and let $s_{E}(D)$ denote the number of elements in the 2-Selmer group of the quadratic twists E_{D} for $D \in K^{*}$. In this paper, we show that if E / K does not have a rational 2-torsion point, then there is a set of prime ideals \mathcal{D} with positive Dirichlet density such that $s_{E}(D)=s_{E}(1)$ whenever D is a hyperprimary element of \mathcal{O}_{K} divisible only by primes contained in \mathcal{D}. When $K=\mathbb{Q}$, it implies that there is a positive constant $\epsilon<1$ such that $\#\left\{|D|<X: s_{E}(D)=s_{E}(1)\right\}>_{E, \epsilon} X /(\log X)^{\epsilon}$ for all sufficiently large X. (Received October 01, 2004)

