Meeting: 1003, Atlanta, Georgia, SS 20A, AMS Special Session on Commutative Algebra, I

1003-13-1047 **Daniel L. Katz**, dlk@math.ku.edu, and **Emanoil Theodorescu***, theodore@math.missouri.edu. Hilbert Polynomials Associated to Tor and Ext for Powers of Ideals, Degree and Leading Coefficient. Preliminary report.

Let (R, m, k) be a Noetherian, quasi-unmixed local ring of dimension d. Let I be an ideal and M, N be finite R-modules. It is known that the lengths (if finite) of (i) Tor_i($M, N/I^nN$), (ii) Extⁱ($M, N/I^nN$) and (with some restrictions) (iii) Extⁱ(N/I^nN , M) are given by polynomials, if n >> 0. In some cases, we get their degrees and leading coefficients. The former are bounded above by, resp., max{dim Tor_i(M, N), $\ell_N(I) - 1$ }, max{dim Extⁱ(M, N), $\ell_N(I) - 1$ }, and a slightly more complicated formula for case (iii). We investigate whether these bounds are the actual degree. In cases (i), (ii) we take M = k, N = R and assume I is normal. If $\ell(I) = d$, we show that the Betti and Bass numbers of I^n are polynomials of degree d - 1. Thus, analytic spread, rather than height of I, is involved. We give an upper bound for the leading coefficient. In case (i), we get a simple proof of a result by V. Kodiyalam, with M = k, N = R and $I = m^t$. In case (ii), we take M = N = R, i = d, and I m-primary. Then, length(Ext^d(R/Iⁿ, R)) has the same leading term as length(R/Iⁿ). (Received October 03, 2004)