Meeting: 1003, Atlanta, Georgia, COLLOQ1, AMS Colloquium Lectures:Lecture I

1003-14-5 Robert Lazarsfeld*, University of Michigan, Department of Mathematics, 2072 East Hall, 525 E Univ Avenue, Ann Arbor MI 48109-1109. How polynomials vanish: singularities, integrals, and ideals, Part I: How many times does a polynomial vanish at a point?
Given a polynomial $f(z) \in \mathbf{C}[z]$ in one variable that vanishes at the origin, one learns as an undergraduate how to count the number of times $z=0$ occurs as a root. For polynomials

$$
f=f\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}\left[z_{1}, \ldots, z_{n}\right]
$$

in several variables, the question becomes much more interesting. Now the zeroes of f define a hypersurface in \mathbf{C}^{n}. The naive generalization of the one variable case leads to the notion of the multiplicity of such a hypersurface at a point, whose geometric meaning we will discuss.

However the multiplicity fails to distinguish between polynomials such as

$$
z^{2}-w^{2} \text { and } z^{2}-w^{3}
$$

A more subtle invariant involves studying for which real numbers $c>0$ the function

$$
\frac{1}{\left|f\left(z_{1}, \ldots, z_{n}\right)\right|^{2 c}}
$$

is locally integrable. The critical value of c turns out to govern a surprising number of geometric, analytic, and arithmetic properties of f. (Received March 22, 2004)

