Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-15-1244Kinnari R. Patel* (matkrpx@langate.gsu.edu), Department of Mathematics and Statistics, 750College of Education Building (7th floor), 30 Pryor Street, Atlanta, GA 30303-3083. Some
Eigenvalue Results for Certain Matrices Associated with Graphs.

In this talk, various results on the adjacency matrix, the Standard Laplacian, and the Normalized Laplacian of a graph will be presented, with a special emphasis on interlacing results. For regular graphs G and H, a precise relationship has been obtained between the eigenvalues of the Normalized Laplacian of $G \times H$, $\mathcal{L}(G \times H)$, and those of $\mathcal{L}(G)$ and $\mathcal{L}(H)$. Let G be a k-regular graph of order n and H be an l-regular graph of order m. Then we prove that $\mathcal{L}(G \times H) = \frac{k}{k+l} [\mathcal{L}(G) \otimes I_m] + \frac{l}{k+l} [I_n \otimes \mathcal{L}(H)]$. For the Normalized Laplacian, the following new interlacing result has been obtained: Let G be a graph and H = G - e, where e is an edge of G. Let $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n = 0$ be the eigenvalues of $\mathcal{L}(G)$ and $\theta_1 \ge \theta_2 \ge \ldots \ge \theta_n$ be the eigenvalues of $\mathcal{L}(H)$. Then, $\lambda_{k-1} \ge \theta_k \ge \lambda_{k+1}$ for each $k = 1, 2, 3, \ldots, n$, where $\lambda_0 = 2$ and $\lambda_{n+1} = 0$. (Received October 04, 2004)