Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-15-1244 Kinnari R. Patel* (matkrpx@langate.gsu.edu), Department of Mathematics and Statistics, 750 College of Education Building (7th floor), 30 Pryor Street, Atlanta, GA 30303-3083. Some Eigenvalue Results for Certain Matrices Associated with Graphs.
In this talk, various results on the adjacency matrix, the Standard Laplacian, and the Normalized Laplacian of a graph will be presented, with a special emphasis on interlacing results. For regular graphs G and H, a precise relationship has been obtained between the eigenvalues of the Normalized Laplacian of $G \times H, \mathcal{L}(G \times H)$, and those of $\mathcal{L}(G)$ and $\mathcal{L}(H)$. Let G be a k-regular graph of order n and H be an l-regular graph of order m. Then we prove that $\mathcal{L}(G \times H)=\frac{k}{k+l}\left[\mathcal{L}(G) \otimes I_{m}\right]+\frac{l}{k+l}\left[I_{n} \otimes \mathcal{L}(H)\right]$. For the Normalized Laplacian, the following new interlacing result has been obtained: Let G be a graph and $H=G-e$, where e is an edge of G. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}=0$ be the eigenvalues of $\mathcal{L}(G)$ and $\theta_{1} \geq \theta_{2} \geq \ldots \geq \theta_{n}$ be the eigenvalues of $\mathcal{L}(H)$. Then, $\lambda_{k-1} \geq \theta_{k} \geq \lambda_{k+1}$ for each $k=1,2,3, \ldots, n$, where $\lambda_{0}=2$ and $\lambda_{n+1}=0$. (Received October 04, 2004)

