Meeting: 1003, Atlanta, Georgia, SS 9A, AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates, I

1003-15-69 Margaret Lay* (laymarga@grinnell.edu), P.O. Box 08-33, Grinnell College, Grinnell, IA 50112, Amanda M Pascoe (amanda.pascoe@furman.edu), PMB 29529 Furman, 3300 Poinsett Hwy., Greenville, SC 29613, and Ben Harris. Minimum Rank of Positive Semi-Definite Matrices with a Prescribed Graph.
We may associate a graph G to a Hermitian matrix $A=\left(a_{i j}\right)$ if $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left(v_{i}, v_{j}\right) \in V(G)$ if and only if $a_{i j}$ is nonzero. The problem is to determine the minimum rank of all positive semi-definite (PSD) matrices associated with a given graph. Let $\operatorname{msr}(G)$ denote the minimum PSD rank of G. New results from this project relate to certain classes of graphs, including bipartite graphs and those with msr of 2 and 3 , and certain operations on graphs such as joins. We present further results concerning the relationship between $\operatorname{msr}(G)$ and $\operatorname{msr}(G \backslash v)$ for a given $v \in V(G)$, and we give a catalog of the minimum ranks of all graphs with order at most 7 .

This research was supported by an NSF grant and done under the supervision of Sivaram Narayan at Central Michigan University. (Received July 29, 2004)

