Meeting: 1003, Atlanta, Georgia, SS 23A, AMS Special Session on Representations of Lie Algebras, I

1003-16-208Darren R. Neubauer* (neubauer@math.wisc.edu), 480 Lincoln Drive, Madison, WI53706-1388. Raising and Lowering Maps and Modules for the Quantum Affine Algebra $U_q(\widehat{sl}_2)$.

Let \mathbb{K} denote an algebraically closed field and let $q \in \mathbb{K}$ be nonzero and not a root of unity. Let V be a nonzero finite dim. vector space over \mathbb{K} . Let V_0, V_1, \ldots, V_d be a sequence of nonzero subspaces that direct sum to V. Suppose R and L are linear maps on V such that

- 1. $RV_i \subseteq V_{i+1}$ $(0 \le i \le d),$
- 2. $LV_i \subseteq V_{i-1}$ $(0 \le i \le d),$
- 3. for $0 \leq i \leq d/2$, $R^{d-2i}|_{V_i} : V_i \to V_{d-i}$ is a bijection,
- 4. for $0 \leq i \leq d/2$, $L^{d-2i}|_{V_{d-i}}: V_{d-i} \to V_i$ is a bijection,
- 5. $R^{3}L [3]R^{2}LR + [3]RLR^{2} LR^{3} = 0,$
- 6. $L^{3}R [3]L^{2}RL + [3]LRL^{2} RL^{3} = 0,$

where $[3] = (q^3 - q^{-3})/(q - q^{-1})$. Let K be the linear map on V such that, for $0 \le i \le d$, V_i is an eigenspace for K with eigenvalue q^{2i-d} . We show there exists a unique $U_q(\widehat{sl}_2)$ -module structure on V such that each of $R - e_1^-$, $L - e_0^-$, $K - K_0$, $K^{-1} - K_1$ vanish on V, where e_1^-, e_0^-, K_0, K_1 are Chevelley generators for $U_q(\widehat{sl}_2)$. We determine which $U_q(\widehat{sl}_2)$ -modules arise from our construction. (Received August 27, 2004)