Meeting: 1003, Atlanta, Georgia, SS 23A, AMS Special Session on Representations of Lie Algebras, I

1003-16-34 Steven Glenn Jackson (jackson@math.umb.edu), University of Massachusetts Boston, 100 Morrissey blvd, Boston, MA 02125, and Alfred G. Noël*, University of Massachusetts Boston, 100 Morrissey blvd, Boston, MA 02125. Prehomogeneous Spaces Associated with Nilpotent Orbits of Complex Lie Groups.

Let \mathfrak{g} be a semisimple complex Lie algebra and G its adjoint group. The number of nilpotent orbits of G in \mathfrak{g} is finite. Let X be a representative of a nilpotent orbit \mathcal{O} of G in \mathfrak{g} then from the Jacobson-Morozov theorem X can be embedded into a \mathfrak{sl}_2 -triple (H, X, Y)

 ad_H introduces a grading:

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$$
 where $\mathfrak{g}_i = \{Z \in \mathfrak{g} : [H, Z] = iZ\}$ and \mathfrak{g}_i is dual to \mathfrak{g}_{-i} .

It is a fact that \mathfrak{g}_0 is a reductive Lie subalgebra of \mathfrak{g} . For $i \neq 0$, \mathfrak{g}_i is a G_0 -module and a theorem of Vinberg asserts that each pair (G_0, \mathfrak{g}_i) is a prehomogeneous space in the sense of Sato and Kimura. In this paper we achieve two goals:

1. We compute the irreducible components of each \mathfrak{g}_i as a G_0 -module.

2. We determine the relative invariants of the above prehomogeneous spaces when \mathfrak{g} is classical. (Received June 23, 2004)