Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-20-651 Bret J. Benesh* (benesh@math.wisc.edu), 480 Lincoln Drive, Madison, WI 53706. Counting generators of finite groups that are generated by two groups of prime power order.
Let P be a d-generated p-group and Q be a d-generated q-group for distinct primes p and q. It has been conjectured that for any finite group $G=\langle P, Q\rangle, G$ is $(d+1)$-generated. Lucchini determined that any minimal counterexample to this conjecture embeds into L^{t} where L has a unique minimal normal subgroup $M=S^{n}$ with S nonabelian simple. Up to information on finite simple groups, we prove that L / M is $(d+1)$-generated or nonsolvable. (Received September 29, 2004)

