Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-20-942 Luise-Charlotte Kappe* (menger@math.binghamton.edu), Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902-6000, and Gabriela A. Mendoza (mendoza@math.binghamton.edu), Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902-6000. On the Power Structure of Finite Groups. Preliminary report.
It is well known that the squares of elements in a group do not form a subgroup and that the alternating group on four letters is minimal with this property. For given n, what is the group of minimal order such that the n-th powers of elements do not form a subroup? For odd n, it can be shown that the dihedral group of order 2 p is minimal with this property, where p is the smallest prime dividing n .

If n is even, the situation is more complex. The order of the group of minimal order with this property depends on the odd prime factors of n and the exact 2-power dividing n . (Received October 01, 2004)

