Meeting: 1003, Atlanta, Georgia, SS 34A, AMS Special Session on Algorithmic Algebraic and Analytic Geometry, I

1003-26-1689 Charles N. Delzell* (delzell@math.lsu.edu), Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803. Extension of the Fourier-Budan theorem to one-variable signomials. Preliminary report.
Let $f(x)=a_{0} x^{r_{0}}+a_{1} x^{r_{1}}+\cdots+a_{k} x^{r_{k}}$, where each $a_{i} \in \mathbb{R}$, each $r_{i} \in \mathbb{N}:=\{0,1, \ldots\}$, and $r_{0}<r_{1}<\cdots<r_{k}$. Suppose $u<v$. Let $z(f, u, v)=$ the number of roots of f in $(u, v]$, counted with multiplicity. For any $w \in \mathbb{R}$ and $n \in \mathbb{N}$, let $s(f, w, n)=$ the number of sign-changes in the sequence $f(w), f^{\prime}(w), f^{\prime \prime}(w), \ldots, f^{(n)}(w)$ (skipping over zeros). Then the Fourier-Budan Theorem says that $z(f, u, v) \leq s\left(f, u, r_{k}\right)-s\left(f, v, r_{k}\right)$ and $z(f, u, v) \equiv s\left(f, u, r_{k}\right)-s\left(f, v, r_{k}\right)(\bmod 2)$. In this paper we weaken the hypothesis of this theorem by allowing the r_{i} to be arbitrary real numbers; but we must then restrict u and v to be positive, to avoid non-real values of $f(x)$. Our conclusion is then that there exists $N \in \mathbb{N}$ such that for all $n \geq N, z(f, u, v) \leq s(f, u, n)-s(f, v, n)$ and $z(f, u, v) \equiv s(f, u, n)-s(f, v, n) \quad(\bmod 2)$. We give an explicit upper bound on such an N, in terms of v and the a_{i} and r_{i}. The main idea of the proof is to let i_{0} be the least $i \in\{0,1, \ldots, k\}$ (if any) such that $r_{i} \notin \mathbb{N}$, and then to show that for large $n,\left.f^{(n)}(v) \cdot \frac{d^{n}}{d x^{n}} a_{i_{0}} x^{r_{i}}\right|_{x=v}>0$. We also show that such an extension is impossible for arbitrary real analytic f. (Received October 07, 2004)

