Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-26-550 J. Marshall Ash* (mash@math.depaul.edu), Department of Mathematics, DePaul University, Chicago, IL 60614. A non-differentiable function that is L^{p} differentiable.
A real-valued function f of a real variable is differentiable at x if there is a real number $f^{\prime}(x)$ such that

$$
\left|f(x+h)-f(x)-f^{\prime}(x) h\right|=o(h) \text { as } h \rightarrow 0 .
$$

Fix $p \in(0, \infty)$. A function is differentiable in the L^{p} sense at x if there is a real number $f_{p}^{\prime}(x)$ such that

$$
\left\|f(x+h)-f(x)-f_{p}^{\prime}(x) h\right\|_{p}=o(h) \text { as } h \rightarrow 0
$$

where $\|g(h)\|_{p}=\left(\frac{1}{h} \int_{0}^{h}|g(t)|^{p} d t\right)^{1 / p}$. We show that there is a set E of positive Lebesgue measure and a function nowhere differentiable on E which is differentiable in the L^{p} sense for every positive p at each point of E.

2000 MS Classification: Primary 26A27; secondary 26A24 (Received September 21, 2004)

