Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-33-1065 Friedrich Littmann* (flittman@math.ubc.ca), Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada. *Quantitative Tauberian theorems and an extremal problem in Fourier analysis.* Preliminary report.

A Tauberian theorem deduces statements about the average on [0, x] of a positive Borel measure α from the behavior of $L(s) - (s-1)^{-1}$ in the halfplane $\Re s \ge 1$, where $L(s) = \int_{0-}^{\infty} \exp(-ts) d\alpha(t)$.

Let $f_r(x) = \exp(-rx)$ for x > 0 and f(x) = 0 for x < 0. In 1981, S. W. Graham and J. D. Vaaler found best one-sided approximations to $f_r(x)$ by entire functions of finite exponential type and used these as tools to give sharp bounds in a Tauberian theorem for α under the assumption that the continuation of $L(s) - (s-1)^{-1}$ from $\Re s > 1$ to $\Re s = 1$ is known only for $|\Im s| < T$ with some positive constant T.

In this talk I will address the problem of best one-sided approximation of $x^n f_r(x)$ and its connection with Tauberian theorems for integrated measures. For n > 0 the construction of the auxiliary approximations requires knowledge of the zeros of the generating function of the Bernoulli polynomials, $g(t, a) = t \exp(at)(\exp(t) - 1)^{-1}$ in the region $\mathbf{R} \times [0, 1]$. If time permits, I will sketch the connection. (Received October 03, 2004)