Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-41-983 Natacha C. Fontes-Merz* (fontesnc@westminster.edu), Department of Mathematics, Westminster College, New Wilmington, PA 16172. Norms of Interpolation Operators.

My talk concerns calculating the norm of the operator

$$L_{n-1}(\cdot;\zeta): H^{\infty}(D) \to C$$

where $L_{n-1}(\cdot; \zeta)$ represents the Lagrange interpolation polynomial of degree n-1, evaluated at some complex number ζ , and defined by interpolating functions in $H^{\infty}(D)$ at the zeros of $z^n - r^n$. We assume that 0 < r < 1 and that $|\zeta| > 1$.

Although our goal is to calculate the norm of the operator for all values of $n \ge 2$ and all values of ζ satisfying $|\zeta| > 1$, we will find an explicit formula for the norm of the operator for only certain values of n and ζ . In particular, we have formulas for $n \ge 3$ and $|\zeta| > 1.35$, for n = 2 and $|\zeta| > 1$, and for n = 3 and $\zeta = Re^{i\frac{\pi}{3}}$, where R > 1. (Received October 01, 2004)