Meeting: 1003, Atlanta, Georgia, ASL CP, ASL Session for Contributed Papers

1003-47-1328 Sami M. Hamid^{*} (hamid^{@math.tamu.edu}), P.O. Box # 291, College Station, TX 77841. On the Hyperinvariant Subspace Problem.

Let \mathcal{H} be a complex Hilbert space with dim $\mathcal{H} = \aleph_0$, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of operators on \mathcal{H} . We write (A)and (BCP) for the subset of $\mathcal{L}(\mathcal{H})$ of algebraic operators and c.n.u. contractions with essential spectrum dominating on the unit circle, respectively, and if $T \in \mathcal{L}(\mathcal{H})$, we write $\operatorname{Hlat}(T)$ for the lattice of all hyperinvariant subspaces of T. In a sequence of four recent papers, two of which was coauthored by the speaker, the following results were obtained. *Theorem* 1. $\forall T \in \mathcal{L}(\mathcal{H}) \setminus (A)$ and every $0 \leq \theta < 1$, $\exists B_T \in (\operatorname{BCP}) \cap C_{00}$ with $\sigma(B_T) = \sigma_e(B_T) = \{\zeta : \theta \leq |\zeta| \leq 1\}$ such that Hlat $(T) \equiv \operatorname{Hlat}(B_T)$. *Theorem* 2. \exists a block-diagonal (BCP), C_{00} contraction $D \in \mathcal{L}(\mathcal{H})$ with $\sigma(D)$ the unit disc such that $\forall \varepsilon > 0, \exists$ a compact $K_{T,\varepsilon} \in \mathcal{L}(\mathcal{H})$ such that Hlat $(T) \equiv \operatorname{Hlat}(D + K_{T,\varepsilon})$. The speaker will discus the impact of these results on the theory of the structure of (BCP)-operators. (Received October 05, 2004)