Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-53-1344 Andrew Bucki* (ajbucki@lunet.edu), Langston, OK 73050. Para-φ-Lie Algebras. Preliminary report.

Let M be an n-dimensional differentiable manifold. An endomorphism of M given by a tensor field φ of type (1,1) and constant rank r which satisfies $\varphi^3 - \varphi = 0$ is called a para- φ -structure and M is a para- φ -manifold. Let M_i be a para- φ -manifold with a para- φ -structure φ_i (i = 1, 2) and let $f : M_1 \to M_2$ be a diffeomorphism. Then f is a para- φ -map if $\varphi_2 \circ f_* = f_* \circ \varphi_1$. If G is a Lie group with an integrable para- φ -structure φ and both L_g and $R_g : G \to G$ are para- φ maps, then G is called a para- φ -Lie group. In this paper, para- φ -Lie algebras are defined to establish some properties of para- φ -Lie groups in purely algebraic way. It is shown that every para- φ -Lie group G is the quotient of the product of an almost product Lie group and a Lie group with trivial para- φ -structure by a discrete subgroup if and only if its Lie algebra \mathfrak{g} is a para- φ -Lie algebra. (Received October 04, 2004)