Meeting: 1003, Atlanta, Georgia, SS 11A, AMS Special Session on Riemannian Geometry, I

1003-53-1474 Stephanie B. Alexander* (sba@math. uiuc.edu), Math. Dept., 1409 West Green St., Urbana, IL 61801, and Richard L. Bishop (bishop@math.uiuc.edu), Math. Dept., 1409 West Green St., Urbana, IL 61801. Curvature and injectivity radius of subspaces in spaces of curvature bounded above. Preliminary report.
A subset N of a geodesic metric space M has extrinsic curvature $<A$ if intrinsic distances $d_{N}=s$ and extrinsic distances $d_{M}=r$ satisfy $s-r \leq \frac{A^{2}}{24} r^{3}+o\left(r^{3}\right)$. Equivalently, for any $\epsilon>0$ and for s sufficiently small, r is greater than the distance in the Euclidean plane between the endpoints of a circular arc of length s and curvature $A+\epsilon$. For Riemannian submanifolds, this is the same as a bound, $|I I|<A$, on the second fundamental form. Specific estimates are given for the intrinsic curvature and injectivity radius of N when M is an Alexandrov space of curvature $\leq K$. Even for Riemannian submanifolds, this injectivity radius estimate is new as far as we know. (Received October 05, 2004)

