Meeting: 1003, Atlanta, Georgia, AMS CP 1, AMS Contributed Paper Session

1003-60-581 Leanna Horton* (leanna.horton@gmail.com), Anne Shiu and James Gardner. Palindromes Under a 1st Order Markov Model with Applications to Genetic Sequences. Preliminary report.

Consider a stationary 4 state Markov chain $\{X_j\}_{j=1}^n$ with state space $\{A, T, G, C\}$ and transition matrix

$$\Gamma = \begin{array}{ccc} A & T & G & C \\ A & \Gamma_{aa} & \Gamma_{at} & \Gamma_{ag} & \Gamma_{ac} \\ \Gamma_{ta} & \Gamma_{tt} & \Gamma_{tg} & \Gamma_{tc} \\ \Gamma_{ga} & \Gamma_{gt} & \Gamma_{gg} & \Gamma_{gc} \\ \Gamma_{ca} & \Gamma_{ct} & \Gamma_{cg} & \Gamma_{cc} \end{array} \right)$$

with $.1 < \Gamma_{ij} < .6$ for all $i, j \in \{a, t, g, c\}$. Let M_k be the number of palindromes counted in an overlapping fashion in $\{X_j\}_{j=1}^n$. Using the Stein-Chen Method we show that M_k is approximately Poisson. We also derive an Erdős-Rényi type result for L_n , where L_n is the length of the longest palindrome in $\{X_j\}_{j=1}^n$. (Received September 23, 2004)