Meeting: 1003, Atlanta, Georgia, SIAMMINI 3, SIAM Minisymposium on Error-Correcting Codes

1003-94-585 Xiang-dong Hou* (xhou@math.usf.edu), Department of Mathematics, University of South Florida, Tampa, FL 33620-5700. Asymptotic Numbers of Non-Equivalent Codes in Three Notions of Equivalence.

Let $\mathcal{V}(\mathbb{F}_q^n)$ be the set of all subspaces of \mathbb{F}_q^n . The following three groups act on $\mathcal{V}(\mathbb{F}_q^n)$: (i) the symmetric group on the coordinate positions of \mathbb{F}_q^n ; (ii) the group of monomial transformations of \mathbb{F}_q^n ; (iii) the group of semi-linear monomial transformations of \mathbb{F}_q^n . The orbits of $\mathcal{V}(\mathbb{F}_q^n)$ under these actions are the equivalence classes of linear codes in \mathbb{F}_q^n under three notions of equivalence: permutation equivalence, monomial equivalence and equivalence. Let $N_{n,q}^{\mathfrak{S}}$, $N_{n,q}^{\mathfrak{M}}$, $N_{n,q}^{\Gamma}$ denote the numbers of the orbits under the three actions on $\mathcal{V}(\mathbb{F}_q^n)$ respectively. It was recently proved that as $n \to \infty$, $N_{n,q}^{\mathfrak{S}} \sim \frac{|\mathcal{V}(\mathbb{F}_q^n)|}{n!}$ and $N_{n,q}^{\mathfrak{M}} \sim \frac{|\mathcal{V}(\mathbb{F}_q^n)|}{n!(q-1)^{n-1}}$. In this paper, we show that $N_{n,q}^{\Gamma} \sim \frac{|\mathcal{V}(\mathbb{F}_q^n)|}{n!(q-1)^{n-1}r}$, where $q = p^r$ and p is a prime. (Received September 23, 2004)