Meeting: 1003, Atlanta, Georgia, SIAMMINI 3, SIAM Minisymposium on Error-Correcting Codes

1003-94-585 Xiang-dong Hou* (xhou@math.usf.edu), Department of Mathematics, University of South Florida, Tampa, FL 33620-5700. Asymptotic Numbers of Non-Equivalent Codes in Three Notions of Equivalence.
Let $\mathcal{V}\left(\mathbb{F}_{q}^{n}\right)$ be the set of all subspaces of \mathbb{F}_{q}^{n}. The following three groups act on $\mathcal{V}\left(\mathbb{F}_{q}^{n}\right)$: (i) the symmetric group on the coordinate positions of \mathbb{F}_{q}^{n}; (ii) the group of monomial transformations of \mathbb{F}_{q}^{n}; (iii) the group of semi-linear monomial transformations of \mathbb{F}_{q}^{n}. The orbits of $\mathcal{V}\left(\mathbb{F}_{q}^{n}\right)$ under these actions are the equivalence classes of linear codes in \mathbb{F}_{q}^{n} under three notions of equivalence: permutation equivalence, monomial equivalence and equivalence. Let $N_{n, q}^{\mathfrak{G}}, N_{n, q}^{\mathfrak{M}}, N_{n, q}^{\Gamma}$ denote the numbers of the orbits under the three actions on $\mathcal{V}\left(\mathbb{F}_{q}^{n}\right)$ respectively. It was recently proved that as $n \rightarrow \infty, N_{n, q}^{\mathfrak{G}} \sim \frac{\left|\mathcal{V}\left(\mathbb{F}_{q}^{n}\right)\right|}{n!}$ and $N_{n, q}^{\mathfrak{M}} \sim \frac{\left|\mathcal{V}\left(\mathbb{F}_{q}^{n}\right)\right|}{n!(q-1)^{n-1}}$. In this paper, we show that $N_{n, q}^{\Gamma} \sim \frac{\left|\mathcal{V}\left(\mathbb{F}_{q}^{n}\right)\right|}{n!(q-1)^{n-1} r}$, where $q=p^{r}$ and p is a prime. (Received September 23, 2004)

