Meeting: 1003, Atlanta, Georgia, MAA CP J1, MAA Session on Projects and Demonstrations that Enhance a Differential Equations Course

1003-J1-927 Richard N. Barshinger* (rxb10@psu.edu), Penn State-Scranton, 120 Ridge View Drive, Dunmore, PA 18512. Solving the Linear Drag Flight Equation Analytically.
The time-of-flight for ground-to-ground vertical motion with linear drag is the nonzero root of $0=-2 a t+(1+$ $a)(1-\exp (-2 a t))$, where $a=\mathrm{drag}$ coefficient x initial velocity/gravity constant, and " t " is a non-dimensional scaled time variable. Though typically solved numerically, we show how to obtain a convergent series solution in the guage functions $\left.a^{n} /(1+a)^{(} n+1\right)$. (Received October 01, 2004)

